Feiyue Ge, Yingying Han, Changsheng Feng, Han Zhang, Feifan Chen, Dan Xu, Chen-Lei Tao, Fang Cheng* and Xue-Jun Wu*,
{"title":"Halide Ions Regulating the Morphologies of PbS and Au@PbS Core–Shell Nanocrystals: Synthesis, Self-Assembly, and Electrical Transport Properties","authors":"Feiyue Ge, Yingying Han, Changsheng Feng, Han Zhang, Feifan Chen, Dan Xu, Chen-Lei Tao, Fang Cheng* and Xue-Jun Wu*, ","doi":"10.1021/acs.jpclett.3c02614","DOIUrl":null,"url":null,"abstract":"<p >The geometry and surface state of nanocrystals (NCs) strongly affect their physiochemical properties, self-assembly behaviors, and potential applications, but there is still a lack of a facile method to regulate the exposed facets of the NCs, especially metal@semiconductor core–shell NCs. Herein, we present a reproducible approach for tuning the morphology of PbS NCs from nanocubes to nano-octahedrons by introducing lead halides as precursors. Excitingly, the method can be easily extended to the synthesis of metal@PbS core–shell NCs with single-crystalline shells and specific exposed facets. In addition, the halide passivation layers on the NCs are found to greatly improve their antioxidant ability. Therefore, the Cl-passivated NCs can self-assemble into atomic-coupled monolayer films via oriented attachment under ambient conditions, which exhibit enhanced electrical conductivities compared with uncoupled counterparts. The precise synthesis of nanocrystals with tunable shapes and the construction of self-assembled films provide a way to expand their application in high-performance optoelectronic devices.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 42","pages":"9521–9530"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02614","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The geometry and surface state of nanocrystals (NCs) strongly affect their physiochemical properties, self-assembly behaviors, and potential applications, but there is still a lack of a facile method to regulate the exposed facets of the NCs, especially metal@semiconductor core–shell NCs. Herein, we present a reproducible approach for tuning the morphology of PbS NCs from nanocubes to nano-octahedrons by introducing lead halides as precursors. Excitingly, the method can be easily extended to the synthesis of metal@PbS core–shell NCs with single-crystalline shells and specific exposed facets. In addition, the halide passivation layers on the NCs are found to greatly improve their antioxidant ability. Therefore, the Cl-passivated NCs can self-assemble into atomic-coupled monolayer films via oriented attachment under ambient conditions, which exhibit enhanced electrical conductivities compared with uncoupled counterparts. The precise synthesis of nanocrystals with tunable shapes and the construction of self-assembled films provide a way to expand their application in high-performance optoelectronic devices.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.