Raphael da Silva Alvim, Itamar Borges Jr., Rita Maria Brito Alves, Rodrigo B. Capaz and Alexandre Amaral Leitão
{"title":"CO adsorption on MgO thin-films: formation and interaction of surface charged defects†","authors":"Raphael da Silva Alvim, Itamar Borges Jr., Rita Maria Brito Alves, Rodrigo B. Capaz and Alexandre Amaral Leitão","doi":"10.1039/D3CP03320A","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) materials formed by thin-films of metal oxides that grow on metal supports are commonly used in heterogeneous catalysis and multilayer electronic devices. Despite extensive research on these systems, the effects of charged defects at supported oxides on surface processes are still not clear. In this work, we perform spin-polarized density-functional theory (DFT) calculations to investigate formation and interaction of charged magnesium and oxygen vacancies, and Al dopants on MgO(001)/Ag(001) surface. The results show a sizable interface compressive effect that decreases the metal work function as electrons are added on the MgO surface with a magnesium vacancy. This surface displays a larger formation energy in a water environment (O-rich condition) even with additional Al-doping. Under these conditions, we found that a polar molecule such as CO is more strongly adsorbed on the low-coordination oxygen sites due to a larger contribution of the channeled electronic transport with the silver interface regardless of the surface charge. Therefore, these findings elucidate how surface intrinsic vacancies can influence or contribute to charge transfer, which allows one to explore more specific reactions at different surface topologies for more efficient catalysts for CO<small><sub>2</sub></small> conversion.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 28982-28997"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03320a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials formed by thin-films of metal oxides that grow on metal supports are commonly used in heterogeneous catalysis and multilayer electronic devices. Despite extensive research on these systems, the effects of charged defects at supported oxides on surface processes are still not clear. In this work, we perform spin-polarized density-functional theory (DFT) calculations to investigate formation and interaction of charged magnesium and oxygen vacancies, and Al dopants on MgO(001)/Ag(001) surface. The results show a sizable interface compressive effect that decreases the metal work function as electrons are added on the MgO surface with a magnesium vacancy. This surface displays a larger formation energy in a water environment (O-rich condition) even with additional Al-doping. Under these conditions, we found that a polar molecule such as CO is more strongly adsorbed on the low-coordination oxygen sites due to a larger contribution of the channeled electronic transport with the silver interface regardless of the surface charge. Therefore, these findings elucidate how surface intrinsic vacancies can influence or contribute to charge transfer, which allows one to explore more specific reactions at different surface topologies for more efficient catalysts for CO2 conversion.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.