Andrea Echeverri, Candice Botuha, Tatiana Gómez, Eleonora Luppi, Julia Contreras-García and Carlos Cárdenas
{"title":"In silico design of bio-marker detection fluorescent probes†","authors":"Andrea Echeverri, Candice Botuha, Tatiana Gómez, Eleonora Luppi, Julia Contreras-García and Carlos Cárdenas","doi":"10.1039/D3CP03476C","DOIUrl":null,"url":null,"abstract":"<p >Fluorescent probes capable of sensing the biological medium are of utmost importance in medical diagnostics. However, the optical spectrum of such probes needs to be tuned with care for compatibility with living tissues. More specifically, fluorescent bioprobes must be adjusted so as to avoid light interference with pigments (<em>e.g.</em> hemoglobin), tissue photodamage, scattering of the emitted light, and autofluorescence. This leads to two important conditions on the optical spectrum of the probes. On the one hand, the emission wavelength must be in an optical window of 650 to 950 nm. On the other hand, the Stokes shift must be large, ideally greater than 150 nm. In this paper, we showcase the in-silico design of potential fluorescent biomarkers fulfilling these two conditions by means of heteroatomic substitution and conjugation on a 1,2,4-triazole core initially far away from biological standards.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 28603-28611"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03476c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent probes capable of sensing the biological medium are of utmost importance in medical diagnostics. However, the optical spectrum of such probes needs to be tuned with care for compatibility with living tissues. More specifically, fluorescent bioprobes must be adjusted so as to avoid light interference with pigments (e.g. hemoglobin), tissue photodamage, scattering of the emitted light, and autofluorescence. This leads to two important conditions on the optical spectrum of the probes. On the one hand, the emission wavelength must be in an optical window of 650 to 950 nm. On the other hand, the Stokes shift must be large, ideally greater than 150 nm. In this paper, we showcase the in-silico design of potential fluorescent biomarkers fulfilling these two conditions by means of heteroatomic substitution and conjugation on a 1,2,4-triazole core initially far away from biological standards.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.