G6PC1 and G6PC2 influence G6P flux but not HSD11B1 activity.

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of molecular endocrinology Pub Date : 2023-10-18 Print Date: 2023-11-01 DOI:10.1530/JME-23-0070
Emily M Hawes, Kayla A Boortz, James K Oeser, Margaret L O'Rourke, Richard M O'Brien
{"title":"G6PC1 and G6PC2 influence G6P flux but not HSD11B1 activity.","authors":"Emily M Hawes, Kayla A Boortz, James K Oeser, Margaret L O'Rourke, Richard M O'Brien","doi":"10.1530/JME-23-0070","DOIUrl":null,"url":null,"abstract":"<p><p>In the endoplasmic reticulum (ER) lumen, glucose-6-phosphatase catalytic subunit 1 and 2 (G6PC1; G6PC2) hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate whereas hexose-6-phosphate dehydrogenase (H6PD) hydrolyzes G6P to 6-phosphogluconate (6PG) in a reaction that generates NADPH. 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) utilizes this NADPH to convert inactive cortisone to cortisol. HSD11B1 inhibitors improve insulin sensitivity whereas G6PC inhibitors are predicted to lower fasting blood glucose (FBG). This study investigated whether G6PC1 and G6PC2 influence G6P flux through H6PD and vice versa. Using a novel transcriptional assay that utilizes separate fusion genes to quantitate glucocorticoid and glucose signaling, we show that overexpression of H6PD and HSD11B1 in the islet-derived 832/13 cell line activated glucocorticoid-stimulated fusion gene expression. Overexpression of HSD11B1 blunted glucose-stimulated fusion gene expression independently of altered G6P flux. While overexpression of G6PC1 and G6PC2 blunted glucose-stimulated fusion gene expression, it had minimal effect on glucocorticoid-stimulated fusion gene expression. In the liver-derived HepG2 cell line, overexpression of H6PD and HSD11B1 activated glucocorticoid-stimulated fusion gene expression but overexpression of G6PC1 and G6PC2 had no effect. In rodents, HSD11B1 converts 11-dehydrocorticosterone (11-DHC) to corticosterone. Studies in wild-type and G6pc2 knockout mice treated with 11-DHC for 5 weeks reveal metabolic changes unaffected by the absence of G6PC2. These data suggest that HSD11B1 activity is not significantly affected by the presence or absence of G6PC1 or G6PC2. As such, G6PC1 and G6PC2 inhibitors are predicted to have beneficial effects by reducing FBG without causing a deleterious increase in glucocorticoid signaling.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-23-0070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

In the endoplasmic reticulum (ER) lumen, glucose-6-phosphatase catalytic subunit 1 and 2 (G6PC1; G6PC2) hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate whereas hexose-6-phosphate dehydrogenase (H6PD) hydrolyzes G6P to 6-phosphogluconate (6PG) in a reaction that generates NADPH. 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1) utilizes this NADPH to convert inactive cortisone to cortisol. HSD11B1 inhibitors improve insulin sensitivity whereas G6PC inhibitors are predicted to lower fasting blood glucose (FBG). This study investigated whether G6PC1 and G6PC2 influence G6P flux through H6PD and vice versa. Using a novel transcriptional assay that utilizes separate fusion genes to quantitate glucocorticoid and glucose signaling, we show that overexpression of H6PD and HSD11B1 in the islet-derived 832/13 cell line activated glucocorticoid-stimulated fusion gene expression. Overexpression of HSD11B1 blunted glucose-stimulated fusion gene expression independently of altered G6P flux. While overexpression of G6PC1 and G6PC2 blunted glucose-stimulated fusion gene expression, it had minimal effect on glucocorticoid-stimulated fusion gene expression. In the liver-derived HepG2 cell line, overexpression of H6PD and HSD11B1 activated glucocorticoid-stimulated fusion gene expression but overexpression of G6PC1 and G6PC2 had no effect. In rodents, HSD11B1 converts 11-dehydrocorticosterone (11-DHC) to corticosterone. Studies in wild-type and G6pc2 knockout mice treated with 11-DHC for 5 weeks reveal metabolic changes unaffected by the absence of G6PC2. These data suggest that HSD11B1 activity is not significantly affected by the presence or absence of G6PC1 or G6PC2. As such, G6PC1 and G6PC2 inhibitors are predicted to have beneficial effects by reducing FBG without causing a deleterious increase in glucocorticoid signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G6PC1和G6PC2影响G6P通量,而不影响HSD11B1活性。
在内质网(ER)腔中,葡萄糖-6-磷酸酶催化亚基1和2(G6PC1;G6PC2)将葡萄糖-6-磷酸(G6P)水解为葡萄糖和无机磷酸盐,而己糖-6-磷酸脱氢酶(H6PD)在产生NADPH的反应中将G6P水解为6-磷酸葡糖酸盐(6PG)。11β-羟基类固醇脱氢酶1型(HSD11B1)利用该NADPH将非活性可的松转化为皮质醇。HSD11B1抑制剂可提高胰岛素敏感性,而G6PC抑制剂可降低空腹血糖(FBG)。本研究调查了G6PC1和G6PC2是否通过H6PD影响G6P通量,反之亦然。使用一种新的转录测定法,利用单独的融合基因来定量糖皮质激素和葡萄糖信号传导,我们发现H6PD和HSD11B1在胰岛来源的832/13细胞系中的过表达激活了糖皮质激素刺激的融合基因表达。HSD11B1的过表达减弱了葡萄糖刺激的融合基因表达,而与G6P流量的改变无关。G6PC1和G6PC2的过表达减弱了葡萄糖刺激的融合基因的表达,但对糖皮质激素刺激的融合蛋白的表达影响最小。在肝来源的HepG2细胞系中,H6PD和HSD11B1的过表达激活了糖皮质激素刺激的融合基因表达,但G6PC1和G6PC2的过表达没有影响。在啮齿类动物中,HSD11B1将11-脱氢皮质酮(11-DHC)转化为皮质酮。对用11-DHC处理5周的野生型和G6pc2敲除小鼠的研究显示,代谢变化不受G6pc2缺失的影响。这些数据表明HSD11B1活性不受G6PC1或G6PC2存在或不存在的显著影响。因此,预测G6PC1和G6PC2抑制剂通过降低FBG而具有有益效果,而不会导致糖皮质激素信号的有害增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
期刊最新文献
Icariside II protects from marrow adipose tissue (MAT) expansion in estrogen-deficient mice by targeting S100A16. Multiple promoter and enhancer differences likely contribute to augmented G6PC2 expression in human versus mouse pancreatic islet alpha cells. Znrf3 exon 2 deletion mice do not recapitulate congenital adrenal hypoplasia. The role of receptor activity-modifying proteins in obesity and diabetes mellitus Pentraxin3 mediates inflammation and adipogenesis in Graves’ orbitopathy pathogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1