{"title":"Machine learning model to predict the width of maxillary central incisor from anthropological measurements.","authors":"Remya Ampadi Ramachandran, Merve Koseoglu, Hatice Özdemir, Funda Bayindir, Cortino Sukotjo","doi":"10.2186/jpr.JPR_D_23_00114","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To improve smile esthetics, clinicians should comprehensively analyze the face and ensure that the sizes selected for the maxillary anterior teeth are compatible with the available anthropological measurements. The inter commissural (ICW), interalar (IAW), intermedial-canthus (MCW), interlateral-canthus (LCW), and interpupillary (IPW) widths are used to determine the width of maxillary central incisors (CW). The aim of this study was to develop an automated approach using machine learning (ML) algorithms to predict central incisor width in a young Turkish population using anthropological measurements. This automation can contribute to digital dentistry and clinical decision-making.</p><p><strong>Methods: </strong>In the initial phase of this cross-sectional study, several ML regression models-including multiple linear regression (MLR), multi-layer-perceptron (MLP), decision-tree (DT), and random forest (RF) models-were validated to confirm the central width prediction accuracy. Datasets containing only male and female measurements, as well as combined were considered for ML model implementation, and the performance of each model was evaluated for an unbiased population dataset.</p><p><strong>Results: </strong>Compared with the other algorithms, the RF algorithm showed improved performance for all cases, with an accuracy of 96%, which represents the percentage of correct predictions. The plot reveals the applicability of the RF model in predicting the CW from anthropological measurements irrespective of the candidate's sex.</p><p><strong>Conclusions: </strong>These results demonstrated the possibility of predicting central incisor widths based on anthropometric measurements using ML models. The accurate central incisor width prediction from these trials also indicates the applicability of the proposed model to be deployed for enhanced clinical decision-making.</p>","PeriodicalId":16887,"journal":{"name":"Journal of prosthodontic research","volume":" ","pages":"432-440"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of prosthodontic research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_23_00114","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To improve smile esthetics, clinicians should comprehensively analyze the face and ensure that the sizes selected for the maxillary anterior teeth are compatible with the available anthropological measurements. The inter commissural (ICW), interalar (IAW), intermedial-canthus (MCW), interlateral-canthus (LCW), and interpupillary (IPW) widths are used to determine the width of maxillary central incisors (CW). The aim of this study was to develop an automated approach using machine learning (ML) algorithms to predict central incisor width in a young Turkish population using anthropological measurements. This automation can contribute to digital dentistry and clinical decision-making.
Methods: In the initial phase of this cross-sectional study, several ML regression models-including multiple linear regression (MLR), multi-layer-perceptron (MLP), decision-tree (DT), and random forest (RF) models-were validated to confirm the central width prediction accuracy. Datasets containing only male and female measurements, as well as combined were considered for ML model implementation, and the performance of each model was evaluated for an unbiased population dataset.
Results: Compared with the other algorithms, the RF algorithm showed improved performance for all cases, with an accuracy of 96%, which represents the percentage of correct predictions. The plot reveals the applicability of the RF model in predicting the CW from anthropological measurements irrespective of the candidate's sex.
Conclusions: These results demonstrated the possibility of predicting central incisor widths based on anthropometric measurements using ML models. The accurate central incisor width prediction from these trials also indicates the applicability of the proposed model to be deployed for enhanced clinical decision-making.
期刊介绍:
Journal of Prosthodontic Research is published 4 times annually, in January, April, July, and October, under supervision by the Editorial Board of Japan Prosthodontic Society, which selects all materials submitted for publication.
Journal of Prosthodontic Research originated as an official journal of Japan Prosthodontic Society. It has recently developed a long-range plan to become the most prestigious Asian journal of dental research regarding all aspects of oral and occlusal rehabilitation, fixed/removable prosthodontics, oral implantology and applied oral biology and physiology. The Journal will cover all diagnostic and clinical management aspects necessary to reestablish subjective and objective harmonious oral aesthetics and function.
The most-targeted topics:
1) Clinical Epidemiology and Prosthodontics
2) Fixed/Removable Prosthodontics
3) Oral Implantology
4) Prosthodontics-Related Biosciences (Regenerative Medicine, Bone Biology, Mechanobiology, Microbiology/Immunology)
5) Oral Physiology and Biomechanics (Masticating and Swallowing Function, Parafunction, e.g., bruxism)
6) Orofacial Pain and Temporomandibular Disorders (TMDs)
7) Adhesive Dentistry / Dental Materials / Aesthetic Dentistry
8) Maxillofacial Prosthodontics and Dysphagia Rehabilitation
9) Digital Dentistry
Prosthodontic treatment may become necessary as a result of developmental or acquired disturbances in the orofacial region, of orofacial trauma, or of a variety of dental and oral diseases and orofacial pain conditions.
Reviews, Original articles, technical procedure and case reports can be submitted. Letters to the Editor commenting on papers or any aspect of Journal of Prosthodontic Research are welcomed.