V Alagarsamy, V Raja Solomon, S Murugesan, P Shyam Sundar, M D Muzaffar-Ur-Rehman, A Chandu, A Dharshini Aishwarya, B Narendhar, M T Sulthana, V Ravikumar
{"title":"<i>In Silico</i> Screening of Some Active Phytochemicals to Identify Promising Inhibitors Against SARS-CoV-2 Targets.","authors":"V Alagarsamy, V Raja Solomon, S Murugesan, P Shyam Sundar, M D Muzaffar-Ur-Rehman, A Chandu, A Dharshini Aishwarya, B Narendhar, M T Sulthana, V Ravikumar","doi":"10.2174/0115701638243222230920051050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are very few small-molecule drug candidates developed against SARS-CoV-2 that have been revealed since the epidemic began in November 2019. The typical medicinal chemistry discovery approach requires more than a decade of the year of painstaking research and development and a significant financial guarantee, which is not feasible in the challenge of the current epidemic.</p><p><strong>Objective: </strong>This current study proposes to find and identify the most effective and promising phytomolecules against SARS-CoV-2 in six essential proteins (3CL protease, Main protease, Papain- Like protease, N-protein RNA binding domain, RNA-dependent RNA polymerase, and Spike receptor binding domain target through <i>in silico</i> screening of 63 phytomolecules from six different Ayurveda medicinal plants.</p><p><strong>Methods: </strong>The phytomolecules and SARS-CoV-2 proteins were taken from public domain databases such as PubChem and RCSB Protein Data Bank. For <i>in silico</i> screening, the molecular interactions, binding energy, and ADMET properties were investigated.</p><p><strong>Results: </strong>The structure-based molecular docking reveals some molecules' greater affinity towards the target than the co-crystal ligand. Our results show that tannic acid, cyanidin-3-rutinoside, zeaxanthin, and carbolactone are phytomolecules capable of inhibiting SARS-CoV-2 target proteins in the least energy conformations. Tannic acid had the least binding energy of -8.8 kcal/mol, which is better than the binding energy of its corresponding co-crystal ligand (-7.5 kcal/mol) against 3 CL protease. Also, it has shown the least binding energy of -9.9 kcal/mol with a more significant number of conventional hydrogen bond interactions against the RdRp target. Cyanidin-3-rutinoside showed binding energy values of -8.8 and -7.6 kcal/mol against Main protease and Papain-like protease, respectively. Zeaxanthin was the top candidate in the N protein RBD with a binding score of - 8.4 kcal/mol, which is slightly better when compared to a co-crystal ligand (-8.2 kcal/mol). In the spike, carbolactone was the suitable candidate with the binding energy of -7.2 kcal/mol and formed a conventional hydrogen bond and two hydrophobic interactions. The best binding affinity-scored phytomolecules were selected for the MD simulations studies.</p><p><strong>Conclusion: </strong>The present in silico screening study suggested that active phytomolecules from medicinal plants could inhibit SARS-CoV-2 targets. The elite docked compounds with drug-like properties have a harmless ADMET profile, which may help to develop promising COVID-19 inhibitors.</p>","PeriodicalId":93962,"journal":{"name":"Current drug discovery technologies","volume":" ","pages":"73-89"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug discovery technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701638243222230920051050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: There are very few small-molecule drug candidates developed against SARS-CoV-2 that have been revealed since the epidemic began in November 2019. The typical medicinal chemistry discovery approach requires more than a decade of the year of painstaking research and development and a significant financial guarantee, which is not feasible in the challenge of the current epidemic.
Objective: This current study proposes to find and identify the most effective and promising phytomolecules against SARS-CoV-2 in six essential proteins (3CL protease, Main protease, Papain- Like protease, N-protein RNA binding domain, RNA-dependent RNA polymerase, and Spike receptor binding domain target through in silico screening of 63 phytomolecules from six different Ayurveda medicinal plants.
Methods: The phytomolecules and SARS-CoV-2 proteins were taken from public domain databases such as PubChem and RCSB Protein Data Bank. For in silico screening, the molecular interactions, binding energy, and ADMET properties were investigated.
Results: The structure-based molecular docking reveals some molecules' greater affinity towards the target than the co-crystal ligand. Our results show that tannic acid, cyanidin-3-rutinoside, zeaxanthin, and carbolactone are phytomolecules capable of inhibiting SARS-CoV-2 target proteins in the least energy conformations. Tannic acid had the least binding energy of -8.8 kcal/mol, which is better than the binding energy of its corresponding co-crystal ligand (-7.5 kcal/mol) against 3 CL protease. Also, it has shown the least binding energy of -9.9 kcal/mol with a more significant number of conventional hydrogen bond interactions against the RdRp target. Cyanidin-3-rutinoside showed binding energy values of -8.8 and -7.6 kcal/mol against Main protease and Papain-like protease, respectively. Zeaxanthin was the top candidate in the N protein RBD with a binding score of - 8.4 kcal/mol, which is slightly better when compared to a co-crystal ligand (-8.2 kcal/mol). In the spike, carbolactone was the suitable candidate with the binding energy of -7.2 kcal/mol and formed a conventional hydrogen bond and two hydrophobic interactions. The best binding affinity-scored phytomolecules were selected for the MD simulations studies.
Conclusion: The present in silico screening study suggested that active phytomolecules from medicinal plants could inhibit SARS-CoV-2 targets. The elite docked compounds with drug-like properties have a harmless ADMET profile, which may help to develop promising COVID-19 inhibitors.