Theoretical study on the superconductivity of graphene-like TMB6 (TM = Cr, Fe and Co) monolayer and its potential anchoring and catalytic properties for lithium–sulfur batteries†
Siqi Liu, Rongfang Huang, Jianhua Hou and Qian Duan
{"title":"Theoretical study on the superconductivity of graphene-like TMB6 (TM = Cr, Fe and Co) monolayer and its potential anchoring and catalytic properties for lithium–sulfur batteries†","authors":"Siqi Liu, Rongfang Huang, Jianhua Hou and Qian Duan","doi":"10.1039/D3CP01964K","DOIUrl":null,"url":null,"abstract":"<p >In recent years, two-dimensional materials have aroused enormous interest owing to their superior electrochemical performance, abundant exposed active sites, high specific surfaces and so on. Unlike many stable allotropes, honeycomb hexagonal borophene is kinetically unstable. In this study, we introduce transition metal atoms (Cr, Fe and Co) to stabilize honeycomb hexagonal borophene, forming stable graphene-like TMB<small><sub>6</sub></small> (TM = Cr, Fe and Co) monolayers. Moreover, we explored the possibility of superconductivity and the anchoring materials of lithium–sulfur batteries using the first-principles density functional theory (DFT) calculation. Our results show that CoB<small><sub>6</sub></small> exhibited the best superconductivity with a superconducting transition temperature of 33.3 K. Furthermore, CoB<small><sub>6</sub></small> and FeB<small><sub>6</sub></small> are promising anchoring materials because of the suppression of lithium polysulfides shuttling in lithium–sulfur batteries because they can accelerate sulfur reduction reaction kinetics.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 29182-29191"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp01964k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, two-dimensional materials have aroused enormous interest owing to their superior electrochemical performance, abundant exposed active sites, high specific surfaces and so on. Unlike many stable allotropes, honeycomb hexagonal borophene is kinetically unstable. In this study, we introduce transition metal atoms (Cr, Fe and Co) to stabilize honeycomb hexagonal borophene, forming stable graphene-like TMB6 (TM = Cr, Fe and Co) monolayers. Moreover, we explored the possibility of superconductivity and the anchoring materials of lithium–sulfur batteries using the first-principles density functional theory (DFT) calculation. Our results show that CoB6 exhibited the best superconductivity with a superconducting transition temperature of 33.3 K. Furthermore, CoB6 and FeB6 are promising anchoring materials because of the suppression of lithium polysulfides shuttling in lithium–sulfur batteries because they can accelerate sulfur reduction reaction kinetics.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.