Betaine regulates steroidogenesis, endoplasmic reticulum stress response and Nrf2/HO-1 antioxidant pathways in mouse Leydig cells under hyperglycaemia condition.

IF 2.5 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Archives of Physiology and Biochemistry Pub Date : 2023-10-23 DOI:10.1080/13813455.2023.2272588
Mohammad Reza Tabandeh, Elahe Davoodi, Vahid Bayati, Dian Dayer
{"title":"Betaine regulates steroidogenesis, endoplasmic reticulum stress response and Nrf2/HO-1 antioxidant pathways in mouse Leydig cells under hyperglycaemia condition.","authors":"Mohammad Reza Tabandeh,&nbsp;Elahe Davoodi,&nbsp;Vahid Bayati,&nbsp;Dian Dayer","doi":"10.1080/13813455.2023.2272588","DOIUrl":null,"url":null,"abstract":"<p><p>We studied the effects of betaine on steroidogenesis, endoplasmic reticulum stress and Nrf2 antioxidant pathways of mice Leydig cells under hyperglycaemia conditions. Leydig cells were grown in low and high glucose concentrations (5 mM and 30 mM) in the presence of 5 mM of betaine for 24 h. Gene expression was determined using a real-time PCR method. The protein levels were determined by Western blot analysis. The testosterone production was evaluated by the ELISA method. Cellular contents of reduced and oxidised glutathione were measured by colorimetric method. Hyperglycaemia caused impaired steroidogenesis and ERS in Leydig cells associated with the down-regulation of 3β-HSD, StAR, P450scc, LH receptor and increased expression of GRP78, CHOP, ATF6 and IRE1. Betaine could improve cell viability, attenuate the ERS, and restore testosterone production in Leydig cells under hyperglycaemia conditions. Betaine can protect Leydig cells against the adverse effects of hyperglycaemia by regulating steroidogenesis, antioxidants, and ERS.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2023.2272588","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

We studied the effects of betaine on steroidogenesis, endoplasmic reticulum stress and Nrf2 antioxidant pathways of mice Leydig cells under hyperglycaemia conditions. Leydig cells were grown in low and high glucose concentrations (5 mM and 30 mM) in the presence of 5 mM of betaine for 24 h. Gene expression was determined using a real-time PCR method. The protein levels were determined by Western blot analysis. The testosterone production was evaluated by the ELISA method. Cellular contents of reduced and oxidised glutathione were measured by colorimetric method. Hyperglycaemia caused impaired steroidogenesis and ERS in Leydig cells associated with the down-regulation of 3β-HSD, StAR, P450scc, LH receptor and increased expression of GRP78, CHOP, ATF6 and IRE1. Betaine could improve cell viability, attenuate the ERS, and restore testosterone production in Leydig cells under hyperglycaemia conditions. Betaine can protect Leydig cells against the adverse effects of hyperglycaemia by regulating steroidogenesis, antioxidants, and ERS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甜菜碱在高血糖条件下调节小鼠Leydig细胞的类固醇生成、内质网应激反应和Nrf2/HO-1抗氧化途径。
我们研究了甜菜碱在高血糖条件下对小鼠Leydig细胞类固醇生成、内质网应激和Nrf2抗氧化途径的影响。Leydig细胞在低和高葡萄糖浓度下生长(5 mM和30 mM)在5 mM甜菜碱24 h.使用实时PCR方法测定基因表达。蛋白质水平通过蛋白质印迹分析测定。通过ELISA方法评估睾酮的产生。用比色法测定细胞中还原型谷胱甘肽和氧化型谷胱甘肽的含量。高血糖导致Leydig细胞中类固醇生成和ERS受损,与3β-HSD、StAR、P450scc、LH受体的下调以及GRP78、CHOP、ATF6和IRE1的表达增加有关。在高血糖条件下,甜菜碱可以提高细胞活力,减弱ERS,并恢复Leydig细胞中睾酮的产生。甜菜碱可以通过调节类固醇生成、抗氧化剂和ERS来保护Leydig细胞免受高血糖的不良影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Physiology and Biochemistry
Archives of Physiology and Biochemistry ENDOCRINOLOGY & METABOLISM-PHYSIOLOGY
CiteScore
6.90
自引率
3.30%
发文量
21
期刊介绍: Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders. The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications. Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics: -Dysregulation of hormone receptors and signal transduction -Contribution of gene variants and gene regulatory processes -Impairment of intermediary metabolism at the cellular level -Secretion and metabolism of peptides and other factors that mediate cellular crosstalk -Therapeutic strategies for managing metabolic diseases Special issues dedicated to topics in the field will be published regularly.
期刊最新文献
Beclin1/LC3II/P62 autophagy pathway activation is involved in the protective action of C-peptide against prostate injury in a rat model of type 1 diabetes. Combination therapy of systemic and local metformin improves imiquimod-induced psoriasis-like lesions with type 2 diabetes: the role of AMPK/KGF/STAT3 axis. Correction. The effect of Helicobacter pylori-derived extracellular vesicles on glucose metabolism and induction of insulin resistance in HepG2 cells. Glucose metabolism in the perfused liver did not improve with resistance training in male Swiss mice under caloric restriction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1