Molecular point-of-care devices for the diagnosis of infectious diseases in resource-limited settings – A review of the current landscape, technical challenges, and clinical impact
Kenneth Gavina , Lauren C. Franco , Haseeba Khan , John-Paul Lavik , Ryan F. Relich
{"title":"Molecular point-of-care devices for the diagnosis of infectious diseases in resource-limited settings – A review of the current landscape, technical challenges, and clinical impact","authors":"Kenneth Gavina , Lauren C. Franco , Haseeba Khan , John-Paul Lavik , Ryan F. Relich","doi":"10.1016/j.jcv.2023.105613","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular point-of-care (POC) tests offer high sensitivity, rapid turnaround times, relative ease of use, and the convenience of laboratory-grade testing in the absence of formal laboratory spaces and equipment, making them appealing options for infectious disease diagnosis in resource-limited settings. In this review, we discuss the role and potential of molecular POC tests in resource-limited settings and their associated logistical challenges. We discuss U.S. Food and Drug Administration approval, Clinical Laboratory Improvement Amendments complexity levels, and the REASSURED criteria as a starting point for assessing options currently available inside and outside of the United States. We then present POC tests currently in research and development phases that have potential for commercialization and implementation in limited-resource settings. Finally, we review published studies that have assessed the clinical impact of molecular POC testing in limited- and moderate-resource settings.</p></div>","PeriodicalId":15517,"journal":{"name":"Journal of Clinical Virology","volume":"169 ","pages":"Article 105613"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386653223002366","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular point-of-care (POC) tests offer high sensitivity, rapid turnaround times, relative ease of use, and the convenience of laboratory-grade testing in the absence of formal laboratory spaces and equipment, making them appealing options for infectious disease diagnosis in resource-limited settings. In this review, we discuss the role and potential of molecular POC tests in resource-limited settings and their associated logistical challenges. We discuss U.S. Food and Drug Administration approval, Clinical Laboratory Improvement Amendments complexity levels, and the REASSURED criteria as a starting point for assessing options currently available inside and outside of the United States. We then present POC tests currently in research and development phases that have potential for commercialization and implementation in limited-resource settings. Finally, we review published studies that have assessed the clinical impact of molecular POC testing in limited- and moderate-resource settings.
期刊介绍:
The Journal of Clinical Virology, an esteemed international publication, serves as the official journal for both the Pan American Society for Clinical Virology and The European Society for Clinical Virology. Dedicated to advancing the understanding of human virology in clinical settings, the Journal of Clinical Virology focuses on disseminating research papers and reviews pertaining to the clinical aspects of virology. Its scope encompasses articles discussing diagnostic methodologies and virus-induced clinical conditions, with an emphasis on practicality and relevance to clinical practice.
The journal publishes on topics that include:
• new diagnostic technologies
• nucleic acid amplification and serologic testing
• targeted and metagenomic next-generation sequencing
• emerging pandemic viral threats
• respiratory viruses
• transplant viruses
• chronic viral infections
• cancer-associated viruses
• gastrointestinal viruses
• central nervous system viruses
• one health (excludes animal health)