Development and validation of a novel system that combines a new masticatory simulator and analysis method for modeling the human gummy candy masticatory process

IF 2.8 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Journal of texture studies Pub Date : 2023-10-24 DOI:10.1111/jtxs.12804
Reina Kanda, Motoki Inoue, Tomoko Hisajima, Yoshio Toyama
{"title":"Development and validation of a novel system that combines a new masticatory simulator and analysis method for modeling the human gummy candy masticatory process","authors":"Reina Kanda,&nbsp;Motoki Inoue,&nbsp;Tomoko Hisajima,&nbsp;Yoshio Toyama","doi":"10.1111/jtxs.12804","DOIUrl":null,"url":null,"abstract":"<p>During mastication, food undergoes state and texture changes influenced by various mechanical properties, including compression and fracturing of the molar teeth, mixing with saliva, and oral temperature. Prior studies have explored mastication simulators, however, no studies have assessed the forces and duration applied to the molars by the food during bolus formation. In this study, we developed a novel system that integrates a masticatory simulator and analysis method to evaluate mechanical properties. We developed ORAL-MAPS which is equipped with 6-axis force sensor, pneumatic pressure control mechanism, vertical movement, molar-like module, artificial saliva injection unit, and temperature control apparatus. A gap exists between the upper and lower unit at the closest point, allowing the sensor to measure vertical upward force and duration from food, while compressed air provides constant downward pressure. We hypothesized a correlation between the total integrated muscle activity ratio obtained from the human masseter muscle electromyography (iEMG). We compared the normalized impulse obtained from ORAL-MAPS with the normalized total iEMG obtained from human studies with four different types of gummy candies. As a result, the normalized total impulse of gummy candies A, B, C, and D were 1.00 ± 0.00, 1.29 ± 0.06, 0.95 ± 0.00, and 0.39 ± 0.0, respectively. The normalized total iEMG of the same gummy candies were 1.00 ± 0.00, 1.23 ± 0.15, 0.98 ± 0.09, and 0.45 ± 0.07, respectively. Thus, no significant difference was observed between the normalized total impulse obtained in vitro and the normalized total iEMG values for masticating the gummy candies B, C, and D (<i>p</i> &gt; .05).</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12804","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During mastication, food undergoes state and texture changes influenced by various mechanical properties, including compression and fracturing of the molar teeth, mixing with saliva, and oral temperature. Prior studies have explored mastication simulators, however, no studies have assessed the forces and duration applied to the molars by the food during bolus formation. In this study, we developed a novel system that integrates a masticatory simulator and analysis method to evaluate mechanical properties. We developed ORAL-MAPS which is equipped with 6-axis force sensor, pneumatic pressure control mechanism, vertical movement, molar-like module, artificial saliva injection unit, and temperature control apparatus. A gap exists between the upper and lower unit at the closest point, allowing the sensor to measure vertical upward force and duration from food, while compressed air provides constant downward pressure. We hypothesized a correlation between the total integrated muscle activity ratio obtained from the human masseter muscle electromyography (iEMG). We compared the normalized impulse obtained from ORAL-MAPS with the normalized total iEMG obtained from human studies with four different types of gummy candies. As a result, the normalized total impulse of gummy candies A, B, C, and D were 1.00 ± 0.00, 1.29 ± 0.06, 0.95 ± 0.00, and 0.39 ± 0.0, respectively. The normalized total iEMG of the same gummy candies were 1.00 ± 0.00, 1.23 ± 0.15, 0.98 ± 0.09, and 0.45 ± 0.07, respectively. Thus, no significant difference was observed between the normalized total impulse obtained in vitro and the normalized total iEMG values for masticating the gummy candies B, C, and D (p > .05).

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新系统的开发和验证,该系统结合了一种新的咀嚼模拟器和分析方法,用于模拟人类软糖咀嚼过程。
在咀嚼过程中,食物的状态和质地会受到各种机械性能的影响,包括磨牙的压缩和断裂、与唾液的混合以及口腔温度。先前的研究已经探索了咀嚼模拟器,然而,没有研究评估在团块形成过程中食物对磨牙施加的力和持续时间。在这项研究中,我们开发了一种新的系统,该系统集成了咀嚼模拟器和分析方法来评估机械性能。我们开发了ORAL-MAPS,它配备了6轴力传感器、气压控制机构、垂直运动、臼齿状模块、人工唾液注射单元和温度控制装置。上下单元之间最近点处存在间隙,允许传感器测量食物的垂直向上力和持续时间,而压缩空气提供恒定的向下压力。我们假设从人类咬肌肌电图(iEMG)获得的总整合肌肉活动率之间存在相关性。我们将从ORAL-MAPS获得的归一化脉冲与从四种不同类型的软糖的人体研究获得的归一化总iEMG进行了比较。结果,软糖a、B、C和D的归一化总脉冲为1.00 ± 0.00,1.29 ± 0.060.95 ± 0.00和0.39 ± 0.0。相同软糖的归一化总iEMG为1.00 ± 0.00、1.23 ± 0.15、0.98 ± 0.09和0.45 ± 分别为0.07。因此,在体外获得的归一化总脉冲和咀嚼软糖B、C和D的归一化总iEMG值之间没有观察到显著差异(p > .05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of texture studies
Journal of texture studies 工程技术-食品科技
CiteScore
6.30
自引率
9.40%
发文量
78
审稿时长
>24 weeks
期刊介绍: The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference. Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to): • Physical, mechanical, and micro-structural principles of food texture • Oral physiology • Psychology and brain responses of eating and food sensory • Food texture design and modification for specific consumers • In vitro and in vivo studies of eating and swallowing • Novel technologies and methodologies for the assessment of sensory properties • Simulation and numerical analysis of eating and swallowing
期刊最新文献
A Review of Processing Techniques and Rheological Properties of Yogurts Characterize Firmness Changes of Nectarine and Peach Fruit Associated With Harvest Maturity and Storage Duration Using Parameters of Force–Displacement Curves Predicting Color Development and Texture Changes in Tomatoes Treated With Hot Water and Exposed to High-Temperature Ethylene Using Support Vector Regression Correction to “Partial Substitution of Egg White Protein by Sodium Caseinate/Tannin Acid/Octenyl Succinate Starch Composite: A Study on the Physicochemical Properties in Cake and Ice Cream” Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1