Development and validation of a novel system that combines a new masticatory simulator and analysis method for modeling the human gummy candy masticatory process
{"title":"Development and validation of a novel system that combines a new masticatory simulator and analysis method for modeling the human gummy candy masticatory process","authors":"Reina Kanda, Motoki Inoue, Tomoko Hisajima, Yoshio Toyama","doi":"10.1111/jtxs.12804","DOIUrl":null,"url":null,"abstract":"<p>During mastication, food undergoes state and texture changes influenced by various mechanical properties, including compression and fracturing of the molar teeth, mixing with saliva, and oral temperature. Prior studies have explored mastication simulators, however, no studies have assessed the forces and duration applied to the molars by the food during bolus formation. In this study, we developed a novel system that integrates a masticatory simulator and analysis method to evaluate mechanical properties. We developed ORAL-MAPS which is equipped with 6-axis force sensor, pneumatic pressure control mechanism, vertical movement, molar-like module, artificial saliva injection unit, and temperature control apparatus. A gap exists between the upper and lower unit at the closest point, allowing the sensor to measure vertical upward force and duration from food, while compressed air provides constant downward pressure. We hypothesized a correlation between the total integrated muscle activity ratio obtained from the human masseter muscle electromyography (iEMG). We compared the normalized impulse obtained from ORAL-MAPS with the normalized total iEMG obtained from human studies with four different types of gummy candies. As a result, the normalized total impulse of gummy candies A, B, C, and D were 1.00 ± 0.00, 1.29 ± 0.06, 0.95 ± 0.00, and 0.39 ± 0.0, respectively. The normalized total iEMG of the same gummy candies were 1.00 ± 0.00, 1.23 ± 0.15, 0.98 ± 0.09, and 0.45 ± 0.07, respectively. Thus, no significant difference was observed between the normalized total impulse obtained in vitro and the normalized total iEMG values for masticating the gummy candies B, C, and D (<i>p</i> > .05).</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12804","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During mastication, food undergoes state and texture changes influenced by various mechanical properties, including compression and fracturing of the molar teeth, mixing with saliva, and oral temperature. Prior studies have explored mastication simulators, however, no studies have assessed the forces and duration applied to the molars by the food during bolus formation. In this study, we developed a novel system that integrates a masticatory simulator and analysis method to evaluate mechanical properties. We developed ORAL-MAPS which is equipped with 6-axis force sensor, pneumatic pressure control mechanism, vertical movement, molar-like module, artificial saliva injection unit, and temperature control apparatus. A gap exists between the upper and lower unit at the closest point, allowing the sensor to measure vertical upward force and duration from food, while compressed air provides constant downward pressure. We hypothesized a correlation between the total integrated muscle activity ratio obtained from the human masseter muscle electromyography (iEMG). We compared the normalized impulse obtained from ORAL-MAPS with the normalized total iEMG obtained from human studies with four different types of gummy candies. As a result, the normalized total impulse of gummy candies A, B, C, and D were 1.00 ± 0.00, 1.29 ± 0.06, 0.95 ± 0.00, and 0.39 ± 0.0, respectively. The normalized total iEMG of the same gummy candies were 1.00 ± 0.00, 1.23 ± 0.15, 0.98 ± 0.09, and 0.45 ± 0.07, respectively. Thus, no significant difference was observed between the normalized total impulse obtained in vitro and the normalized total iEMG values for masticating the gummy candies B, C, and D (p > .05).
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing