Knowledge-Driven Online Multimodal Automated Phenotyping System.

Xin Xiong, Sara Morini Sweet, Molei Liu, Chuan Hong, Clara-Lea Bonzel, Vidul Ayakulangara Panickan, Doudou Zhou, Linshanshan Wang, Lauren Costa, Yuk-Lam Ho, Alon Geva, Kenneth D Mandl, Su-Chun Cheng, Zongqi Xia, Kelly Cho, J Michael Gaziano, Katherine P Liao, Tianxi Cai, Tianrun Cai
{"title":"Knowledge-Driven Online Multimodal Automated Phenotyping System.","authors":"Xin Xiong, Sara Morini Sweet, Molei Liu, Chuan Hong, Clara-Lea Bonzel, Vidul Ayakulangara Panickan, Doudou Zhou, Linshanshan Wang, Lauren Costa, Yuk-Lam Ho, Alon Geva, Kenneth D Mandl, Su-Chun Cheng, Zongqi Xia, Kelly Cho, J Michael Gaziano, Katherine P Liao, Tianxi Cai, Tianrun Cai","doi":"10.1101/2023.09.29.23296239","DOIUrl":null,"url":null,"abstract":"<p><p>Though electronic health record (EHR) systems are a rich repository of clinical information with large potential, the use of EHR-based phenotyping algorithms is often hindered by inaccurate diagnostic records, the presence of many irrelevant features, and the requirement for a human-labeled training set. In this paper, we describe a knowledge-driven online multimodal automated phenotyping (KOMAP) system that i) generates a list of informative features by an online narrative and codified feature search engine (ONCE) and ii) enables the training of a multimodal phenotyping algorithm based on summary data. Powered by composite knowledge from multiple EHR sources, online article corpora, and a large language model, features selected by ONCE show high concordance with the state-of-the-art AI models (GPT4 and ChatGPT) and encourage large-scale phenotyping by providing a smaller but highly relevant feature set. Validation of the KOMAP system across four healthcare centers suggests that it can generate efficient phenotyping algorithms with robust performance. Compared to other methods requiring patient-level inputs and gold-standard labels, the fully online KOMAP provides a significant opportunity to enable multi-center collaboration.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.29.23296239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Though electronic health record (EHR) systems are a rich repository of clinical information with large potential, the use of EHR-based phenotyping algorithms is often hindered by inaccurate diagnostic records, the presence of many irrelevant features, and the requirement for a human-labeled training set. In this paper, we describe a knowledge-driven online multimodal automated phenotyping (KOMAP) system that i) generates a list of informative features by an online narrative and codified feature search engine (ONCE) and ii) enables the training of a multimodal phenotyping algorithm based on summary data. Powered by composite knowledge from multiple EHR sources, online article corpora, and a large language model, features selected by ONCE show high concordance with the state-of-the-art AI models (GPT4 and ChatGPT) and encourage large-scale phenotyping by providing a smaller but highly relevant feature set. Validation of the KOMAP system across four healthcare centers suggests that it can generate efficient phenotyping algorithms with robust performance. Compared to other methods requiring patient-level inputs and gold-standard labels, the fully online KOMAP provides a significant opportunity to enable multi-center collaboration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
知识驱动的在线多模式自动表型系统。
尽管电子健康记录(EHR)系统是一个具有巨大潜力的丰富临床信息库,但基于EHR的表型算法的使用经常受到不准确的诊断记录、许多不相关特征的存在以及对人类标记训练集的要求的阻碍。在本文中,我们描述了一种知识驱动的在线多模式自动表型(KOMAP)系统,该系统i)通过在线叙述和编码特征搜索引擎(ONCE)生成信息特征列表,ii)能够基于汇总数据训练多模式表型算法。在来自多个EHR来源的复合知识、在线文章语料库和大型语言模型的支持下,ONCE选择的特征与最先进的人工智能模型(GPT4和ChatGPT)高度一致,并通过提供较小但高度相关的特征集来鼓励大规模表型分型。KOMAP系统在四个医疗保健中心的验证表明,它可以生成具有强大性能的高效表型算法。与其他需要患者级输入和金标准标签的方法相比,完全在线的KOMAP为实现多中心协作提供了重要机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-Driven Online Multimodal Automated Phenotyping System. Leveraging functional annotations to map rare variants associated with Alzheimer's disease with gruyere. A Streamlined Point-of-Care CRISPR Test for Tuberculosis Detection Directly from Sputum. Uncovering Phenotypic Expansion in AXIN2-Related Disorders through Precision Animal Modeling. Status and Opportunities of Machine Learning Applications in Obstructive Sleep Apnea: A Narrative Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1