Yu Xiao, Yi Wu, Yifei Wu, Fei Yang, Mingzhe Rong, Zhuo Yang
{"title":"A fuse-based DC circuit breaker with vacuum interrupter enhanced by an external transverse magnetic field","authors":"Yu Xiao, Yi Wu, Yifei Wu, Fei Yang, Mingzhe Rong, Zhuo Yang","doi":"10.1049/hve2.12380","DOIUrl":null,"url":null,"abstract":"<p>Due to the increasing power system capacity, the interruption of large fault currents has gradually become a major challenge in power systems. At the moment, such currents are interrupted mainly via circuit breakers based on the method of active current commutation. However, these types of circuit breakers tend to be costly and oversized. One possible alternative—a fuse-based circuit breaker with current commutation process enhanced by an external transverse magnetic field (ETMF)—is proposed by the authors. Its main advantage lies in the fast current commutation achieved by an ETMF-enhanced three-stage increase of the vacuum arc voltage. The study of the current commutation process is mainly represented by the authors, and the influencing factors of the current commutation—contact opening speed and ETMF current—are discussed. At last, the proposed circuit breaker is verified by an experiment, whose results show that a short-circuit current of 42 kA can be interrupted within just 2 ms.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12380","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12380","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the increasing power system capacity, the interruption of large fault currents has gradually become a major challenge in power systems. At the moment, such currents are interrupted mainly via circuit breakers based on the method of active current commutation. However, these types of circuit breakers tend to be costly and oversized. One possible alternative—a fuse-based circuit breaker with current commutation process enhanced by an external transverse magnetic field (ETMF)—is proposed by the authors. Its main advantage lies in the fast current commutation achieved by an ETMF-enhanced three-stage increase of the vacuum arc voltage. The study of the current commutation process is mainly represented by the authors, and the influencing factors of the current commutation—contact opening speed and ETMF current—are discussed. At last, the proposed circuit breaker is verified by an experiment, whose results show that a short-circuit current of 42 kA can be interrupted within just 2 ms.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf