{"title":"BCDNet: An Optimized Deep Network for Ultrasound Breast Cancer Detection","authors":"S.-Y. Lu , S.-H. Wang , Y.-D. Zhang","doi":"10.1016/j.irbm.2023.100774","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Breast cancer is a common but deadly disease among women. Medical imaging is an effective method to diagnose breast cancer, but manual image screening is time-consuming. In this study, a novel computer-aided diagnosis system for breast cancer detection called BCDNet is proposed.</p></div><div><h3>Material and Methods</h3><p>We leverage pre-trained convolutional neural networks (CNNs) for representation learning and propose an adaptive backbone selection algorithm to obtain the best CNN model. An extreme learning machine serves as the classifier in the BCDNet, and a bat algorithm with chaotic maps is put forward to further optimize the parameters in the classifiers. A public ultrasound image dataset is used in the experiments based on 5-fold cross-validation.</p></div><div><h3>Results</h3><p>Simulation results suggest that our BCDNet outperforms several state-of-the-art breast cancer detection methods in terms of accuracy.</p></div><div><h3>Conclusion</h3><p>The proposed BCDNet is a useful auxiliary tool that can be applied in clinical screening for breast cancer.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Objectives
Breast cancer is a common but deadly disease among women. Medical imaging is an effective method to diagnose breast cancer, but manual image screening is time-consuming. In this study, a novel computer-aided diagnosis system for breast cancer detection called BCDNet is proposed.
Material and Methods
We leverage pre-trained convolutional neural networks (CNNs) for representation learning and propose an adaptive backbone selection algorithm to obtain the best CNN model. An extreme learning machine serves as the classifier in the BCDNet, and a bat algorithm with chaotic maps is put forward to further optimize the parameters in the classifiers. A public ultrasound image dataset is used in the experiments based on 5-fold cross-validation.
Results
Simulation results suggest that our BCDNet outperforms several state-of-the-art breast cancer detection methods in terms of accuracy.
Conclusion
The proposed BCDNet is a useful auxiliary tool that can be applied in clinical screening for breast cancer.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…