Xiao Yu , Wenzhe Song , Jinghua Zheng , Yiwei Chen , Linlin Luo , Congze Fan , Zhongde Shan
{"title":"Effects of Low-pressure Annealing on the Performance of 3D Printed CF/PEEK Composites","authors":"Xiao Yu , Wenzhe Song , Jinghua Zheng , Yiwei Chen , Linlin Luo , Congze Fan , Zhongde Shan","doi":"10.1016/j.cjmeam.2023.100076","DOIUrl":null,"url":null,"abstract":"<div><p>The interlayer bonding properties are normally unsatisfying for 3D printed composites owing to the layer-by-layer formation process. In this study, low-pressure annealing was performed on 3D printed carbon fiber reinforced polyether ether ketone (CF/PEEK) to improve the interlayer bonding strength. The effects of annealing parameters on the mechanical properties and microstructure were studied. The results showed that the interlaminar shear strength (ILSS) of CF/PEEK improved by up to 55.4% after annealing. SEM and μ-CT were also applied to reveal the reinforcing mechanism. This improvement could mainly be attributed to the increased crystallinity of the CF/PEEK after annealing. Additionally, annealing reduced the porosity of the printed CF/PEEK and improved the fiber–resin interface. This resulted in a reduction in the stress concentration areas during loading, thereby enhancing the interlayer bonding strength of CF/PEEK.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"2 2","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665723000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The interlayer bonding properties are normally unsatisfying for 3D printed composites owing to the layer-by-layer formation process. In this study, low-pressure annealing was performed on 3D printed carbon fiber reinforced polyether ether ketone (CF/PEEK) to improve the interlayer bonding strength. The effects of annealing parameters on the mechanical properties and microstructure were studied. The results showed that the interlaminar shear strength (ILSS) of CF/PEEK improved by up to 55.4% after annealing. SEM and μ-CT were also applied to reveal the reinforcing mechanism. This improvement could mainly be attributed to the increased crystallinity of the CF/PEEK after annealing. Additionally, annealing reduced the porosity of the printed CF/PEEK and improved the fiber–resin interface. This resulted in a reduction in the stress concentration areas during loading, thereby enhancing the interlayer bonding strength of CF/PEEK.