Jian-Hua Zhu , Xinzhe Gao , Biying Shi , Jiawei Zou , Yu Ru Li , Ke Zeng , Qi Jia , Heng Bo Jiang
{"title":"New Design to Provide Absolute Protection Within a Certain Period for Biodegradable Magnesium Alloys","authors":"Jian-Hua Zhu , Xinzhe Gao , Biying Shi , Jiawei Zou , Yu Ru Li , Ke Zeng , Qi Jia , Heng Bo Jiang","doi":"10.1016/j.irbm.2023.100784","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p><span>Magnesium and magnesium alloy materials have excellent potential as biodegradable bone plate </span>implants<span>. However, the practical application of magnesium alloys is limited by their high chemical activity and poor corrosion resistance<span><span>. Here, we chose a microarc fluorination (MAF) treatment to </span>improve corrosion resistance while enhancing aspects of magnesium alloy properties. The aim of this study was to identify the effect of fixed-point corrosion on the corrosion resistance as well as the mechanical properties of magnesium alloys and to design a new corrosion-oriented model that can provide absolute protection over a period of time.</span></span></p></div><div><h3>Material and Methods</h3><p><span>MAF treatment is used for surface modification of magnesium alloys to improve the corrosion resistance of magnesium alloys. To investigate the effect of the coating and indentation on the corrosion resistance of Mg alloy, electrochemical corrosion experiments were carried out. It is worth mentioning that in this experiment we measured and analyzed the mechanical properties of the samples, especially the </span>tensile strength.</p></div><div><h3>Results</h3><p>In the innovative indentation sample test, the coated specimens showed lower tensile strength due to the occurrence of fixed-point corrosion. To avoid the loss of mechanical properties due to fixed-point corrosion, we proposed a new idea (Corrosion-oriented Design). Ultimately, the immersion experiments as well as the mechanical properties analysis concluded that the Corrosion-oriented Design samples could maintain the mechanical properties without detectable loss for a long time.</p></div><div><h3>Conclusion</h3><p>The Corrosion-oriented Design model can avoid the nuisance of fixed-point corrosion and control the centralized orientation of corrosion. This provides a new direction for the clinical application of magnesium alloys, which may offer a completely stable bone-healing condition in trauma treatment and avoid the drawbacks caused by the previous uncontrolled corrosion.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000337","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Magnesium and magnesium alloy materials have excellent potential as biodegradable bone plate implants. However, the practical application of magnesium alloys is limited by their high chemical activity and poor corrosion resistance. Here, we chose a microarc fluorination (MAF) treatment to improve corrosion resistance while enhancing aspects of magnesium alloy properties. The aim of this study was to identify the effect of fixed-point corrosion on the corrosion resistance as well as the mechanical properties of magnesium alloys and to design a new corrosion-oriented model that can provide absolute protection over a period of time.
Material and Methods
MAF treatment is used for surface modification of magnesium alloys to improve the corrosion resistance of magnesium alloys. To investigate the effect of the coating and indentation on the corrosion resistance of Mg alloy, electrochemical corrosion experiments were carried out. It is worth mentioning that in this experiment we measured and analyzed the mechanical properties of the samples, especially the tensile strength.
Results
In the innovative indentation sample test, the coated specimens showed lower tensile strength due to the occurrence of fixed-point corrosion. To avoid the loss of mechanical properties due to fixed-point corrosion, we proposed a new idea (Corrosion-oriented Design). Ultimately, the immersion experiments as well as the mechanical properties analysis concluded that the Corrosion-oriented Design samples could maintain the mechanical properties without detectable loss for a long time.
Conclusion
The Corrosion-oriented Design model can avoid the nuisance of fixed-point corrosion and control the centralized orientation of corrosion. This provides a new direction for the clinical application of magnesium alloys, which may offer a completely stable bone-healing condition in trauma treatment and avoid the drawbacks caused by the previous uncontrolled corrosion.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…