Chi-Lun Lin , Yu-Ming Huang , Zheng-Yan Luo , Yu-Hsien Hsieh
{"title":"A Novel Biopsy Needle with Double Concave-Curved Cutting Edges","authors":"Chi-Lun Lin , Yu-Ming Huang , Zheng-Yan Luo , Yu-Hsien Hsieh","doi":"10.1016/j.irbm.2023.100783","DOIUrl":null,"url":null,"abstract":"<div><h3><strong>Background</strong></h3><p>Vacuum-assisted biopsy is a minimally invasive sampling technique that relies on rotational cutting as a major tissue retrieving method. A precise diagnosis of the disease requires large, uncrushed samples, which are impacted by the cutting force of the biopsy needle.</p></div><div><h3><strong>Objectives</strong></h3><p>This study proposes a novel needle design with double-concave-curved cutting edges, which is more suited for rotational needle cutting. We aimed to optimize the design so that large, undamaged samples could be extracted with minimal cutting force.</p></div><div><h3><strong>Materials and Methods</strong></h3><p>Five-factor experiments were designed using the Taguchi method. Experiments involving rotational needle insertion and tissue sampling were conducted to examine the effects of these variables on the cutting force and sampling quality, respectively. The relationship between the cutting force and sampling quality was analyzed.</p></div><div><h3><strong>Results</strong></h3><p>For needle insertion, the optimal design within the design space demonstrated a marked improvement in cutting force from 1.2107 to 0.1888 N. Furthermore, the optimized double concave-curved needle outperformed the blunt needle under the same needle speeds, showing a 24.4% reduction in cutting force (0.1888 vs. 0.2496 N). Increasing rotation-translation ratio or insertion speed would allow for extracting a larger sample (increased up to 21.95% in weight and 17.21% in total length) but may also increase the rotation speed, resulting in sample fragmentation. To simultaneously improve sampling quality and cutting force, a higher <em>K</em> value, larger rotation-translation ratio, and slower insertion speed are suggested. Based on the conditions examined in this study, the optimal needle configuration should include a sharpened cutting edge with a <em>K</em> value of 0.2, a rotation-translation ratio of 8, and an insertion speed of 1 mm/s.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031823000325","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Vacuum-assisted biopsy is a minimally invasive sampling technique that relies on rotational cutting as a major tissue retrieving method. A precise diagnosis of the disease requires large, uncrushed samples, which are impacted by the cutting force of the biopsy needle.
Objectives
This study proposes a novel needle design with double-concave-curved cutting edges, which is more suited for rotational needle cutting. We aimed to optimize the design so that large, undamaged samples could be extracted with minimal cutting force.
Materials and Methods
Five-factor experiments were designed using the Taguchi method. Experiments involving rotational needle insertion and tissue sampling were conducted to examine the effects of these variables on the cutting force and sampling quality, respectively. The relationship between the cutting force and sampling quality was analyzed.
Results
For needle insertion, the optimal design within the design space demonstrated a marked improvement in cutting force from 1.2107 to 0.1888 N. Furthermore, the optimized double concave-curved needle outperformed the blunt needle under the same needle speeds, showing a 24.4% reduction in cutting force (0.1888 vs. 0.2496 N). Increasing rotation-translation ratio or insertion speed would allow for extracting a larger sample (increased up to 21.95% in weight and 17.21% in total length) but may also increase the rotation speed, resulting in sample fragmentation. To simultaneously improve sampling quality and cutting force, a higher K value, larger rotation-translation ratio, and slower insertion speed are suggested. Based on the conditions examined in this study, the optimal needle configuration should include a sharpened cutting edge with a K value of 0.2, a rotation-translation ratio of 8, and an insertion speed of 1 mm/s.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…