Noise-induced collective dynamics in the small-world network of photosensitive neurons

IF 1.8 4区 生物学 Q3 BIOPHYSICS Journal of Biological Physics Pub Date : 2022-07-25 DOI:10.1007/s10867-022-09610-2
Fan Li, Xiaola Li, Liqing Ren
{"title":"Noise-induced collective dynamics in the small-world network of photosensitive neurons","authors":"Fan Li,&nbsp;Xiaola Li,&nbsp;Liqing Ren","doi":"10.1007/s10867-022-09610-2","DOIUrl":null,"url":null,"abstract":"<div><p>Photosensitive neurons can capture and convert external optical signals, and then realize the encoding signal. It is confirmed that a variety of firing modes could be induced under optical stimuli. As a result, it is interesting to explore the mode transitions of collective dynamics in the photosensitive neuron network under external stimuli. In this work, the collective dynamics of photosensitive neurons in a small-world network with non-synaptic coupling will be discussed with spatial diversity of noise and uniform noise applied on, respectively. The results prove that a variety of different collective electrical activities could be induced under different conditions. Under spatial diversity of noise applied on, a chimera state could be observed in the evolution, and steady cluster synchronization could be detected in the end; even the nodes in each cluster depend on the degree of each node. Under uniform noise applied on, the complete synchronization window could be observed alternately in the transient process, and steady complete synchronization could be detected finally. The potential mechanism is that continuous energy is pumped in the phototubes, and energy exchange and balance between neurons to form the resonance synchronization in the network with different noise applied on. Furthermore, it is confirmed that the evolution of collective dynamical behaviors in the network depends on the external stimuli on each node. Moreover, the bifurcation analysis for the single neuron model is calculated, and the results confirm that the electrical activities of single neuron are sensitive to different kinds of noise.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-022-09610-2.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-022-09610-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Photosensitive neurons can capture and convert external optical signals, and then realize the encoding signal. It is confirmed that a variety of firing modes could be induced under optical stimuli. As a result, it is interesting to explore the mode transitions of collective dynamics in the photosensitive neuron network under external stimuli. In this work, the collective dynamics of photosensitive neurons in a small-world network with non-synaptic coupling will be discussed with spatial diversity of noise and uniform noise applied on, respectively. The results prove that a variety of different collective electrical activities could be induced under different conditions. Under spatial diversity of noise applied on, a chimera state could be observed in the evolution, and steady cluster synchronization could be detected in the end; even the nodes in each cluster depend on the degree of each node. Under uniform noise applied on, the complete synchronization window could be observed alternately in the transient process, and steady complete synchronization could be detected finally. The potential mechanism is that continuous energy is pumped in the phototubes, and energy exchange and balance between neurons to form the resonance synchronization in the network with different noise applied on. Furthermore, it is confirmed that the evolution of collective dynamical behaviors in the network depends on the external stimuli on each node. Moreover, the bifurcation analysis for the single neuron model is calculated, and the results confirm that the electrical activities of single neuron are sensitive to different kinds of noise.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光敏神经元小世界网络中噪声诱导的集体动力学
光敏神经元可以捕获并转换外界光信号,实现编码信号。结果表明,光刺激可诱发多种放电模式。因此,探索外部刺激下光敏神经元网络中集体动力学的模式转换是一个有趣的问题。在这项工作中,光敏神经元在具有非突触耦合的小世界网络中的集体动力学将分别在噪声和均匀噪声的空间多样性下进行讨论。结果表明,在不同条件下可诱发多种不同的集体电活动。在噪声的空间分异作用下,在演化过程中可以观察到嵌合体状态,并最终检测到稳定的集群同步;甚至每个集群中的节点也取决于每个节点的度。在均匀噪声作用下,可以在瞬态过程中交替观察到完全同步窗口,最终检测到稳定的完全同步。其潜在机制是在不同噪声作用下,光电管内连续泵送能量,神经元之间进行能量交换和平衡,形成网络内的共振同步。进一步证实了网络中集体动力行为的演化取决于每个节点上的外部刺激。此外,对单神经元模型进行了分岔分析,结果证实了单神经元的电活动对不同类型的噪声都很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
期刊最新文献
Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions Stochastic model of seed dispersal with homogeneous and non-homogeneous Poisson processes under habitat reduction conditions Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage A possible origin of the inverted vertebrate retina revealed by physical modeling Motor domain of condensin and step formation in extruding loop of DNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1