Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites

Mahima Samanth, K. Subrahmanya Bhat
{"title":"Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites","authors":"Mahima Samanth,&nbsp;K. Subrahmanya Bhat","doi":"10.1016/j.scca.2023.100034","DOIUrl":null,"url":null,"abstract":"<div><p>Natural fibres could be used as one of the raw materials for the production of engineering materials. They have the advantage of low density, light weight, biodegrability and the capacity to reprocess to a certain extent. There are certain limitations of such fibres when formed composites with synthetic polymers like high degree of moisture absorption, and lack of affinity between fiber and the matrix. The presence of polar components like hemicellulose and lignin content in the fibres are the reason for these materials to be hydrophilic. This issue has been addressed by treating fiber surface with variety of chemical reagents which is reported to improve mechanical and adhesion property between fiber and the matrix. Chemical treatments can be based on reactions involving esterification methods like acetylation and benzylation, graft polymerization methods like treatments with triazine, isocyanates and maleic anhydride, silane coupling agents, other treatments include alkali, acrylation and acrylonitrile, permanganate, peroxide treatments and also steric acid, sodium chloride and oleoyl chlorite. Surface modification of fibres reduces its moisture absorption tendency and improves their mechanical properties thereby increasing durability of the composites.</p></div>","PeriodicalId":101195,"journal":{"name":"Sustainable Chemistry for Climate Action","volume":"3 ","pages":"Article 100034"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for Climate Action","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772826923000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Natural fibres could be used as one of the raw materials for the production of engineering materials. They have the advantage of low density, light weight, biodegrability and the capacity to reprocess to a certain extent. There are certain limitations of such fibres when formed composites with synthetic polymers like high degree of moisture absorption, and lack of affinity between fiber and the matrix. The presence of polar components like hemicellulose and lignin content in the fibres are the reason for these materials to be hydrophilic. This issue has been addressed by treating fiber surface with variety of chemical reagents which is reported to improve mechanical and adhesion property between fiber and the matrix. Chemical treatments can be based on reactions involving esterification methods like acetylation and benzylation, graft polymerization methods like treatments with triazine, isocyanates and maleic anhydride, silane coupling agents, other treatments include alkali, acrylation and acrylonitrile, permanganate, peroxide treatments and also steric acid, sodium chloride and oleoyl chlorite. Surface modification of fibres reduces its moisture absorption tendency and improves their mechanical properties thereby increasing durability of the composites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续生物复合材料的天然纤维的常规和非常规化学处理方法
天然纤维可作为生产工程材料的原材料之一。它们具有密度低、重量轻、可生物降解和一定程度的再加工能力的优点。当与合成聚合物形成复合材料时,这种纤维存在一定的局限性,如高度吸湿,以及纤维与基体之间缺乏亲和力。纤维中半纤维素和木质素含量等极性成分的存在是这些材料具有亲水性的原因。这个问题已经通过用各种化学试剂处理纤维表面来解决,据报道,这些化学试剂可以改善纤维和基体之间的机械性能和粘附性能。化学处理可以基于涉及酯化方法(如乙酰化和苄基化)、接枝聚合方法(如用三嗪、异氰酸酯和马来酸酐处理)、硅烷偶联剂的反应,其他处理包括碱、丙烯酰化和丙烯腈、高锰酸盐、过氧化处理以及立体酸、氯化钠和油酰亚氯酸盐。纤维的表面改性降低了其吸湿趋势,提高了其机械性能,从而提高了复合材料的耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Erratum to Green approach to synthesize functional carbon nanoparticles at low temperature [Sustainable Chemistry for Climate Action (2022) 100002] Erratum to Developments in the investigation of nitrogen and oxygen stable isotopes in atmospheric nitrate [Sustainable Chemistry for Climate Action (2022) 100003] Erratum to “Conversion of furfuryl alcohol into alkyl¿levulinates using solid acid catalysts” [Sustainable Chemistry for Climate Action (2022) 100004] Advances and challenges in pretreatment technologies for bioethanol production: A comprehensive review Pretreatment of lignocellulosic biomass waste mixtures using a low-cost ionic liquid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1