Delphine Garsuault , Sanaa El Messaoudi , Mookkan Prabakaran , Ian Cheong , Anthony Boulanger , Marion Schmitt-Boulanger
{"title":"Detection of several respiratory viruses with Surface-Enhanced Raman Spectroscopy coupled with Artificial Intelligence","authors":"Delphine Garsuault , Sanaa El Messaoudi , Mookkan Prabakaran , Ian Cheong , Anthony Boulanger , Marion Schmitt-Boulanger","doi":"10.1016/j.clispe.2023.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Diagnoses of viral infections are a challenge when facing a crisis like COVID-19, where their speed and reliability are critical to minimize diseases spread. The gold standard of diagnostics, quantitative Polymerase Chain Reaction, is time- and reagent-consuming and requires qualified personnel. Therefore, it is necessary to find new detection techniques to overcome these barriers. Surface Enhanced Raman Spectroscopy (SERS) is a detection method, based on light and metallic particles admixed with the samples, already used in different fields of research. In this study, we discriminate three respiratory viruses using a combination of SERS and Artificial Intelligence (AI). Our technique appears to be fast, reproducible, and reliable, achieving between 95 % and 100 % of accuracy, standing out as a powerful tool usable for viral diagnostics.</p></div>","PeriodicalId":100277,"journal":{"name":"Clinical Spectroscopy","volume":"5 ","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666054723000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diagnoses of viral infections are a challenge when facing a crisis like COVID-19, where their speed and reliability are critical to minimize diseases spread. The gold standard of diagnostics, quantitative Polymerase Chain Reaction, is time- and reagent-consuming and requires qualified personnel. Therefore, it is necessary to find new detection techniques to overcome these barriers. Surface Enhanced Raman Spectroscopy (SERS) is a detection method, based on light and metallic particles admixed with the samples, already used in different fields of research. In this study, we discriminate three respiratory viruses using a combination of SERS and Artificial Intelligence (AI). Our technique appears to be fast, reproducible, and reliable, achieving between 95 % and 100 % of accuracy, standing out as a powerful tool usable for viral diagnostics.