A thresholding based iterative reconstruction method for limited-angle tomography data

P. Piault , A. King , L. Henry , J.S. Rathore , N. Guignot , J.-P. Deslandes , J.-P. Itié
{"title":"A thresholding based iterative reconstruction method for limited-angle tomography data","authors":"P. Piault ,&nbsp;A. King ,&nbsp;L. Henry ,&nbsp;J.S. Rathore ,&nbsp;N. Guignot ,&nbsp;J.-P. Deslandes ,&nbsp;J.-P. Itié","doi":"10.1016/j.tmater.2023.100008","DOIUrl":null,"url":null,"abstract":"<div><p>Limited-angle computed tomography is often imposed by in-situ experiments combining tomography with sample environments. The missing projection data causes artifacts in the tomographic reconstruction. We demonstrate that the correction of these numerical artifacts can be achieved by restoring the missing projections using an iterative reconstruction scheme. The reconstruction is regularized using segmentation, and thresholds determined from the histogram of reconstructed gray levels. The missing projections are simulated by forward projection and incorporated into the original measured dataset to give a complete angular span. This scheme typically converges within a few iterations. Results are presented for several measurements using parallel-beam synchrotron X-ray tomography and 165 degrees of valid projection data. A simple numerical simulation is used to verify the validity of the experimental results.</p></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"2 ","pages":"Article 100008"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X23000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Limited-angle computed tomography is often imposed by in-situ experiments combining tomography with sample environments. The missing projection data causes artifacts in the tomographic reconstruction. We demonstrate that the correction of these numerical artifacts can be achieved by restoring the missing projections using an iterative reconstruction scheme. The reconstruction is regularized using segmentation, and thresholds determined from the histogram of reconstructed gray levels. The missing projections are simulated by forward projection and incorporated into the original measured dataset to give a complete angular span. This scheme typically converges within a few iterations. Results are presented for several measurements using parallel-beam synchrotron X-ray tomography and 165 degrees of valid projection data. A simple numerical simulation is used to verify the validity of the experimental results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于阈值的有限角度层析成像迭代重建方法
有限角度计算机断层扫描通常是由将断层扫描与样本环境相结合的原位实验强加的。丢失的投影数据导致断层图像重建中的伪影。我们证明了这些数值伪影的校正可以通过使用迭代重建方案恢复丢失的投影来实现。使用分割对重建进行正则化,并根据重建灰度级的直方图确定阈值。通过正向投影模拟缺失的投影,并将其合并到原始测量数据集中,以给出完整的角度跨度。该方案通常在几次迭代内收敛。给出了使用平行束同步加速器X射线断层扫描和165度有效投影数据进行的几次测量的结果。通过简单的数值模拟验证了实验结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of AI crack segmentation models for additive manufacturing Contrast-enhancing staining agents for ex vivo contrast-enhanced computed tomography: A review Visualizing pulp fibers using X-ray tomography: Enhancing the contrast by labeling with iron oxide nanoparticles and the use of immersion oil 3D mineral quantification of particulate materials with rare earth mineral inclusions: Achieving sub-voxel resolution by considering the partial volume and blurring effect Geo-SegNet: A contrastive learning enhanced U-net for geomaterial segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1