Semantic graph based topic modelling framework for multilingual fake news detection

Rami Mohawesh , Xiao Liu , Hilya Mudrika Arini , Yutao Wu , Hui Yin
{"title":"Semantic graph based topic modelling framework for multilingual fake news detection","authors":"Rami Mohawesh ,&nbsp;Xiao Liu ,&nbsp;Hilya Mudrika Arini ,&nbsp;Yutao Wu ,&nbsp;Hui Yin","doi":"10.1016/j.aiopen.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Fake news detection is one of the most alluring problems that has grabbed the interest of Machine Learning (ML) and Natural Language Processing (NLP) experts in recent years. The majority of existing studies on detecting fake news are written in English, restricting its application outside the English-speaking population. The lack of annotated corpora and technologies makes it difficult to identify false news in the scenario of low-resource languages, despite the growth in multilingual web content. Moreover, existing works cannot collect more semantic and contextual characteristics from documents in a particular multilingual text corpus. To bridge up these challenges and deal with the multilingual fake news detection challenge, we develop a new semantic graph attention-based representation learning framework to extract structural and semantic representations of texts. Our experiments on TALLIP fake news datasets showed that the classification performance had been significantly enhanced, ranging from 1% to 7% in terms of accuracy metric, and our proposed framework outperformed the state-of-the-art techniques for the multilingual fake news detection task.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"4 ","pages":"Pages 33-41"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fake news detection is one of the most alluring problems that has grabbed the interest of Machine Learning (ML) and Natural Language Processing (NLP) experts in recent years. The majority of existing studies on detecting fake news are written in English, restricting its application outside the English-speaking population. The lack of annotated corpora and technologies makes it difficult to identify false news in the scenario of low-resource languages, despite the growth in multilingual web content. Moreover, existing works cannot collect more semantic and contextual characteristics from documents in a particular multilingual text corpus. To bridge up these challenges and deal with the multilingual fake news detection challenge, we develop a new semantic graph attention-based representation learning framework to extract structural and semantic representations of texts. Our experiments on TALLIP fake news datasets showed that the classification performance had been significantly enhanced, ranging from 1% to 7% in terms of accuracy metric, and our proposed framework outperformed the state-of-the-art techniques for the multilingual fake news detection task.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义图的多语言假新闻检测主题建模框架
假新闻检测是近年来引起机器学习(ML)和自然语言处理(NLP)专家兴趣的最具吸引力的问题之一。现有的大多数关于检测假新闻的研究都是用英语写的,这限制了它在英语人群之外的应用。尽管多语言网络内容不断增长,但由于缺乏带注释的语料库和技术,在资源匮乏的语言环境中很难识别虚假新闻。此外,现有的作品无法从特定的多语言文本语料库中的文档中收集更多的语义和上下文特征。为了弥补这些挑战并应对多语言假新闻检测的挑战,我们开发了一个新的基于语义图注意力的表示学习框架来提取文本的结构和语义表示。我们在TALLIP假新闻数据集上的实验表明,分类性能得到了显著提高,准确度从1%到7%不等,并且我们提出的框架在多语言假新闻检测任务中优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1