Information Retrieval meets Large Language Models: A strategic report from Chinese IR community

Qingyao Ai , Ting Bai , Zhao Cao , Yi Chang , Jiawei Chen , Zhumin Chen , Zhiyong Cheng , Shoubin Dong , Zhicheng Dou , Fuli Feng , Shen Gao , Jiafeng Guo , Xiangnan He , Yanyan Lan , Chenliang Li , Yiqun Liu , Ziyu Lyu , Weizhi Ma , Jun Ma , Zhaochun Ren , Xiaofei Zhu
{"title":"Information Retrieval meets Large Language Models: A strategic report from Chinese IR community","authors":"Qingyao Ai ,&nbsp;Ting Bai ,&nbsp;Zhao Cao ,&nbsp;Yi Chang ,&nbsp;Jiawei Chen ,&nbsp;Zhumin Chen ,&nbsp;Zhiyong Cheng ,&nbsp;Shoubin Dong ,&nbsp;Zhicheng Dou ,&nbsp;Fuli Feng ,&nbsp;Shen Gao ,&nbsp;Jiafeng Guo ,&nbsp;Xiangnan He ,&nbsp;Yanyan Lan ,&nbsp;Chenliang Li ,&nbsp;Yiqun Liu ,&nbsp;Ziyu Lyu ,&nbsp;Weizhi Ma ,&nbsp;Jun Ma ,&nbsp;Zhaochun Ren ,&nbsp;Xiaofei Zhu","doi":"10.1016/j.aiopen.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop’s outcomes, including the rethinking of IR’s core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"4 ","pages":"Pages 80-90"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop’s outcomes, including the rethinking of IR’s core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息检索与大型语言模型的结合——来自中国信息检索界的战略报告
信息检索(IR)的研究领域已经发生了重大变化,超越了传统的搜索,以满足不同用户的信息需求。最近,大型语言模型(LLM)在文本理解、生成和知识推理方面表现出了非凡的能力,为IR研究开辟了令人兴奋的途径。LLM不仅有助于生成检索,还为用户理解、模型评估和用户系统交互提供了改进的解决方案。更重要的是,IR模型、LLM和人类之间的协同关系形成了一种新的技术范式,对信息寻求来说更为强大。IR模型提供实时和相关的信息,LLM贡献内部知识,人类在信息服务的可靠性方面扮演着需求者和评估者的核心角色。尽管如此,仍然存在重大挑战,包括计算成本、可信度问题、特定领域的限制和道德考虑。为了深入讨论LLM对IR研究的变革性影响,中国IR界于2023年4月举办了一次战略研讨会,产生了宝贵的见解。本文总结了研讨会的成果,包括对IR核心价值观的重新思考、LLM和IR的相互增强、新的IR技术范式的提出以及公开的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1