C 2-GaMe: Classification of cluster galaxy membership with machine learning

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-01 DOI:10.1016/j.ascom.2023.100743
D. Farid , H. Aung , D. Nagai , A. Farahi , E. Rozo
{"title":"C\n2-GaMe: Classification of cluster galaxy membership with machine learning","authors":"D. Farid ,&nbsp;H. Aung ,&nbsp;D. Nagai ,&nbsp;A. Farahi ,&nbsp;E. Rozo","doi":"10.1016/j.ascom.2023.100743","DOIUrl":null,"url":null,"abstract":"<div><p>We present <span>C</span>lassification of <span>C</span>luster <span>Ga</span>laxy <span>Me</span>mbers (<span>C</span>\n<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-<span>GaMe</span><span>), a classification algorithm<span> based on a suite of machine learning models that differentiates galaxies into orbiting, infalling, and background (interloper) populations, using phase space information as input. We train and test </span></span><span>C</span>\n<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-<span>GaMe</span> with the galaxies from UniverseMachine mock catalog based on Multi-Dark Planck 2 N-body simulations. We show that probabilistic classification is superior to deterministic classification in estimating the physical properties of clusters, including density profiles and velocity dispersion. We propose a set of estimators to get an unbiased estimation of cluster properties. We demonstrate that <span>C</span>\n<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>-<span>GaMe</span><span> can recover the distribution of orbiting and infalling galaxies’ position and velocity distribution with </span><span><math><mrow><mo>&lt;</mo><mn>1</mn><mtext>%</mtext></mrow></math></span><span> statistical error when using probabilistic predictions in the presence of interlopers in the projected phase space. Additionally, we demonstrate the robustness of trained models by applying them to a different simulation. Finally, adding a specific star formation rate and the ratio of the galaxy’s halo mass to the cluster’s halo mass as additional features improves the classification performance. We discuss potential applications of this technique to enhance cluster cosmology and galaxy quenching.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133723000586","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present Classification of Cluster Galaxy Members (C 2-GaMe), a classification algorithm based on a suite of machine learning models that differentiates galaxies into orbiting, infalling, and background (interloper) populations, using phase space information as input. We train and test C 2-GaMe with the galaxies from UniverseMachine mock catalog based on Multi-Dark Planck 2 N-body simulations. We show that probabilistic classification is superior to deterministic classification in estimating the physical properties of clusters, including density profiles and velocity dispersion. We propose a set of estimators to get an unbiased estimation of cluster properties. We demonstrate that C 2-GaMe can recover the distribution of orbiting and infalling galaxies’ position and velocity distribution with <1% statistical error when using probabilistic predictions in the presence of interlopers in the projected phase space. Additionally, we demonstrate the robustness of trained models by applying them to a different simulation. Finally, adding a specific star formation rate and the ratio of the galaxy’s halo mass to the cluster’s halo mass as additional features improves the classification performance. We discuss potential applications of this technique to enhance cluster cosmology and galaxy quenching.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C2-GaMe:用机器学习对星系团成员进行分类
我们提出了星系团成员分类(C2-GaMe),这是一种基于一套机器学习模型的分类算法,使用相空间信息作为输入,将星系区分为轨道星系、撞击星系和背景星系(闯入者)。我们用基于多暗普朗克2 N体模拟的UniverseMachine模拟目录中的星系训练和测试C2-GaMe。我们证明了概率分类在估计团簇的物理性质(包括密度分布和速度色散)方面优于确定性分类。我们提出了一组估计量来获得聚类性质的无偏估计。我们证明了C2-GaMe可以恢复轨道星系和入流星系的位置和速度分布,<;在投影相位空间中存在闯入者的情况下使用概率预测时的1%统计误差。此外,我们通过将训练模型应用于不同的模拟来证明其稳健性。最后,添加特定的恒星形成率和星系团晕质量与星团晕质量的比率作为额外特征,可以提高分类性能。我们讨论了这项技术在增强星团宇宙学和星系猝灭方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1