{"title":"Mind meets machine: Unravelling GPT-4’s cognitive psychology","authors":"Sifatkaur Dhingra , Manmeet Singh , Vaisakh S.B. , Neetiraj Malviya , Sukhpal Singh Gill","doi":"10.1016/j.tbench.2023.100139","DOIUrl":null,"url":null,"abstract":"<div><p>Cognitive psychology delves on understanding perception, attention, memory, language, problem-solving, decision-making, and reasoning. Large Language Models (LLMs) are emerging as potent tools increasingly capable of performing human-level tasks. The recent development in the form of Generative Pre-trained Transformer 4 (GPT-4) and its demonstrated success in tasks complex to humans exam and complex problems has led to an increased confidence in the LLMs to become perfect instruments of intelligence. Although GPT-4 report has shown performance on some cognitive psychology tasks, a comprehensive assessment of GPT-4, via the existing well-established datasets is required. In this study, we focus on the evaluation of GPT-4’s performance on a set of cognitive psychology datasets such as CommonsenseQA, SuperGLUE, MATH and HANS. In doing so, we understand how GPT-4 processes and integrates cognitive psychology with contextual information, providing insight into the underlying cognitive processes that enable its ability to generate the responses. We show that GPT-4 exhibits a high level of accuracy in cognitive psychology tasks relative to the prior state-of-the-art models. Our results strengthen the already available assessments and confidence on GPT-4’s cognitive psychology abilities. It has significant potential to revolutionise the field of Artificial Intelligence (AI), by enabling machines to bridge the gap between human and machine reasoning.</p></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"3 3","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277248592300056X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive psychology delves on understanding perception, attention, memory, language, problem-solving, decision-making, and reasoning. Large Language Models (LLMs) are emerging as potent tools increasingly capable of performing human-level tasks. The recent development in the form of Generative Pre-trained Transformer 4 (GPT-4) and its demonstrated success in tasks complex to humans exam and complex problems has led to an increased confidence in the LLMs to become perfect instruments of intelligence. Although GPT-4 report has shown performance on some cognitive psychology tasks, a comprehensive assessment of GPT-4, via the existing well-established datasets is required. In this study, we focus on the evaluation of GPT-4’s performance on a set of cognitive psychology datasets such as CommonsenseQA, SuperGLUE, MATH and HANS. In doing so, we understand how GPT-4 processes and integrates cognitive psychology with contextual information, providing insight into the underlying cognitive processes that enable its ability to generate the responses. We show that GPT-4 exhibits a high level of accuracy in cognitive psychology tasks relative to the prior state-of-the-art models. Our results strengthen the already available assessments and confidence on GPT-4’s cognitive psychology abilities. It has significant potential to revolutionise the field of Artificial Intelligence (AI), by enabling machines to bridge the gap between human and machine reasoning.