Kitchen-based light tomography - a DIY toolkit for advancing tomography - by and for the tomography community

Emanuel Larsson , Doğa Gürsoy , Stephen A. Hall
{"title":"Kitchen-based light tomography - a DIY toolkit for advancing tomography - by and for the tomography community","authors":"Emanuel Larsson ,&nbsp;Doğa Gürsoy ,&nbsp;Stephen A. Hall","doi":"10.1016/j.tmater.2022.100001","DOIUrl":null,"url":null,"abstract":"<div><p>We present a recipe for building a portable DIY toolkit, entitled Kitchen-Based Light Tomography (KBLT) for performing tomography using visible light with low-cost and easily accessible components. We also present different use cases to mimic different challenges in tomography, such as imaging time evolving samples. All the software for motor controls, image acquisition, image reconstruction and analysis is open-sourced and available online. The fast acquisition of KBLT datasets permits 4D scanning (3D plus time), also in combination with so-called sample environments, which can support the advancement of improved image reconstruction algorithms. We believe this ‘<em>Do it yourself</em>’ (DIY) toolkit will be useful to tomography users, beamline scientists and computational researchers, and the tomography community in general.</p></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"1 ","pages":"Article 100001"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X22000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a recipe for building a portable DIY toolkit, entitled Kitchen-Based Light Tomography (KBLT) for performing tomography using visible light with low-cost and easily accessible components. We also present different use cases to mimic different challenges in tomography, such as imaging time evolving samples. All the software for motor controls, image acquisition, image reconstruction and analysis is open-sourced and available online. The fast acquisition of KBLT datasets permits 4D scanning (3D plus time), also in combination with so-called sample environments, which can support the advancement of improved image reconstruction algorithms. We believe this ‘Do it yourself’ (DIY) toolkit will be useful to tomography users, beamline scientists and computational researchers, and the tomography community in general.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于厨房的光层析成像-一个用于推进层析成像的DIY工具包-由层析成像社区提供
我们提出了一个构建便携式DIY工具包的配方,题为“基于厨房的光断层扫描(KBLT)”,用于使用低成本且易于访问的组件使用可见光进行断层扫描。我们还提出了不同的用例来模拟断层扫描中的不同挑战,例如成像时间演变的样本。所有用于运动控制、图像采集、图像重建和分析的软件都是开源的,可以在线获得。KBLT数据集的快速采集允许4D扫描(3D加时间),也与所谓的样本环境相结合,这可以支持改进的图像重建算法的进步。我们相信,这个“自己动手”(DIY)工具包将对断层扫描用户、束线科学家和计算研究人员以及整个断层扫描社区有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of AI crack segmentation models for additive manufacturing Contrast-enhancing staining agents for ex vivo contrast-enhanced computed tomography: A review Visualizing pulp fibers using X-ray tomography: Enhancing the contrast by labeling with iron oxide nanoparticles and the use of immersion oil 3D mineral quantification of particulate materials with rare earth mineral inclusions: Achieving sub-voxel resolution by considering the partial volume and blurring effect Geo-SegNet: A contrastive learning enhanced U-net for geomaterial segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1