Constitutive modeling of a laumontite-rich tight rock and the application to poromechanical analysis of deeply drilled wells

Sina Heidari , Biao Li , Antoine B. Jacquey , Bin Xu
{"title":"Constitutive modeling of a laumontite-rich tight rock and the application to poromechanical analysis of deeply drilled wells","authors":"Sina Heidari ,&nbsp;Biao Li ,&nbsp;Antoine B. Jacquey ,&nbsp;Bin Xu","doi":"10.1016/j.rockmb.2023.100039","DOIUrl":null,"url":null,"abstract":"<div><p>Geological formations containing laumontite-rich rock are usually treated as problematic for geo-energy production projects because the presence of laumontite mineral can promote complex mechanical behaviors. Previous laboratory results indicate that rock formations with a higher laumontite content display severe stress sensitivity in poromechanical responses. With an increase in confining pressure, there is a transition from dilation to compression regime and the resulting localization styles range from shear dilation to compaction bands. In this study, we conduct finite element modeling of constitutive behaviors of rocks retrieved from the tight glutenite reservoir formation using a thermodynamic-consistent plasticity model. The shear dilation to compaction transition is well characterized. Poromechanical analysis is also conducted to analyze the plastic zone development around a borehole drilled in an over pressured reservoir. The simulated stress-paths of key points around the borehole are used to demonstrate the plastic strain development processes. The impact of in-situ stress on the wellbore stability is highlighted, and a comparison with the results from using the traditional plastic constitutive model is conducted.</p></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"2 2","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230423000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Geological formations containing laumontite-rich rock are usually treated as problematic for geo-energy production projects because the presence of laumontite mineral can promote complex mechanical behaviors. Previous laboratory results indicate that rock formations with a higher laumontite content display severe stress sensitivity in poromechanical responses. With an increase in confining pressure, there is a transition from dilation to compression regime and the resulting localization styles range from shear dilation to compaction bands. In this study, we conduct finite element modeling of constitutive behaviors of rocks retrieved from the tight glutenite reservoir formation using a thermodynamic-consistent plasticity model. The shear dilation to compaction transition is well characterized. Poromechanical analysis is also conducted to analyze the plastic zone development around a borehole drilled in an over pressured reservoir. The simulated stress-paths of key points around the borehole are used to demonstrate the plastic strain development processes. The impact of in-situ stress on the wellbore stability is highlighted, and a comparison with the results from using the traditional plastic constitutive model is conducted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富laumonite致密岩本构建模及在深井孔隙力学分析中的应用
含有富含laumontite岩石的地质构造通常被视为地质能源生产项目的问题,因为laumontite矿物的存在会促进复杂的力学行为。先前的实验室结果表明,laumontite含量较高的岩层在孔隙力学响应中表现出严重的应力敏感性。随着围压的增加,出现了从膨胀到压缩的转变,由此产生的局部化样式从剪切膨胀到压实带。在本研究中,我们使用热力学一致塑性模型对从致密砂砾岩储层中提取的岩石的本构行为进行了有限元建模。剪切膨胀-压实转变具有良好的特征。还进行了孔隙力学分析,以分析超压储层中钻孔周围的塑性区发育。利用钻孔周围关键点的模拟应力路径来演示塑性应变的发展过程。强调了地应力对井筒稳定性的影响,并与传统塑性本构模型的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Viscoelastic plastic interaction of tunnel support and strain-softening rock mass considering longitudinal effect Shear behavior and dilatancy of an artificial hard-matrix bimrock: An experimental study focusing on the role of blocky structure Effects of joint persistence and testing conditions on cyclic shear behavior of en-echelon joints under CNS conditions Discontinuous deformation analysis for subsidence of fractured formations under seepage: A case study Experimental behavior and fracture prediction of a novel high-strength and high-toughness steel subjected to tension and shear loading tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1