Uniquely determine fracture dimension and formation permeability from diagnostic fracture injection test

HanYi Wang , Mukul M. Sharma
{"title":"Uniquely determine fracture dimension and formation permeability from diagnostic fracture injection test","authors":"HanYi Wang ,&nbsp;Mukul M. Sharma","doi":"10.1016/j.rockmb.2023.100040","DOIUrl":null,"url":null,"abstract":"<div><p>Estimating formation permeability is crucial for production estimation, hydraulic fracturing design optimization and rate transient analysis. Laboratory experiments can be used to measure the permeability of rock samples, but the results may not be representative at a field scale because of reservoir heterogeneity and pre-existing natural fracture systems. Diagnostic Fracture Injection Tests (DFIT) have now become standard practice to estimate formation pore pressure and formation permeability. However, in low permeability reservoirs, after-closure radial flow is often absent, which can cast significant uncertainties in interpreting DFIT data. Without knowing the fracture dimension prior, open fracture stiffness/compliance can't be determined, which is required for formation permeability estimation. Previous work has to assume a fracture radius or fracture height in order to estimate formation permeability, thus dent the confidence in the interpretation results. In the study, we present a new approach to determine fracture dimension, leak-off coefficient and formation permeability uniquely based on material balance and basic fracture mechanics, using data from shut-in to after-closure linear flow. Field examples are also presented to demonstrate the simplicity and effectiveness of this new approach.</p></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"2 2","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230423000136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Estimating formation permeability is crucial for production estimation, hydraulic fracturing design optimization and rate transient analysis. Laboratory experiments can be used to measure the permeability of rock samples, but the results may not be representative at a field scale because of reservoir heterogeneity and pre-existing natural fracture systems. Diagnostic Fracture Injection Tests (DFIT) have now become standard practice to estimate formation pore pressure and formation permeability. However, in low permeability reservoirs, after-closure radial flow is often absent, which can cast significant uncertainties in interpreting DFIT data. Without knowing the fracture dimension prior, open fracture stiffness/compliance can't be determined, which is required for formation permeability estimation. Previous work has to assume a fracture radius or fracture height in order to estimate formation permeability, thus dent the confidence in the interpretation results. In the study, we present a new approach to determine fracture dimension, leak-off coefficient and formation permeability uniquely based on material balance and basic fracture mechanics, using data from shut-in to after-closure linear flow. Field examples are also presented to demonstrate the simplicity and effectiveness of this new approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过诊断性裂缝注入试验,独特地确定裂缝尺寸和地层渗透率
地层渗透率的估算对于产量估算、水力压裂设计优化和速率瞬态分析至关重要。实验室实验可以用来测量岩石样品的渗透率,但由于储层的非均质性和预先存在的天然裂缝系统,结果在现场规模上可能不具有代表性。裂缝注入诊断测试(DFIT)现在已经成为估计地层孔隙压力和地层渗透率的标准实践。然而,在低渗透油藏中,通常不存在闭合后的径向流,这可能会给解释DFIT数据带来很大的不确定性。在事先不知道裂缝尺寸的情况下,无法确定开口裂缝的刚度/柔度,这是地层渗透率估计所必需的。以前的工作必须假设裂缝半径或裂缝高度来估计地层渗透率,从而降低解释结果的可信度。在这项研究中,我们提出了一种新的方法,以材料平衡和基本断裂力学为基础,利用从关井到关井后的线性流动数据,唯一地确定裂缝尺寸、漏失系数和地层渗透率。现场实例也证明了这种新方法的简单性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Data-driven machine learning approaches for simultaneous prediction of peak particle velocity and frequency induced by rock blasting in mining Manually directional splitting of in-situ intact igneous rocks into large sheets Finite domain solution of a hydraulic fracture in a permeable rock Dynamic evolution of reservoir permeability and deformation in geothermal battery energy storage using abandoned mines Modeling of particle migration in piping based on an improved discrete element method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1