Shahnawaz Ahmad , Iman Shakeel , Shabana Mehfuz , Javed Ahmad
{"title":"Deep learning models for cloud, edge, fog, and IoT computing paradigms: Survey, recent advances, and future directions","authors":"Shahnawaz Ahmad , Iman Shakeel , Shabana Mehfuz , Javed Ahmad","doi":"10.1016/j.cosrev.2023.100568","DOIUrl":null,"url":null,"abstract":"<div><p>In recent times, the machine learning<span> (ML) community has recognized the deep learning<span><span> (DL) computing model as the Gold Standard. DL has gradually become the most widely used computational approach in the field of machine learning, achieving remarkable results in various complex cognitive tasks that are comparable to, or even surpassing human performance. One of the key benefits of DL is its ability to learn from vast amounts of data. In recent years, the DL field has witnessed rapid expansion and has found successful applications in various conventional areas. Significantly, DL has outperformed established ML techniques in multiple domains, such as </span>cloud computing<span><span>, robotics, cybersecurity, and several others. Nowadays, cloud computing has become crucial owing to the constant growth of the IoT network. It remains the finest approach for putting sophisticated computational applications into use, stressing the huge </span>data processing<span>. Nevertheless, the cloud falls short because of the crucial limitations of cutting-edge IoT applications that produce enormous amounts of data and necessitate a quick reaction time with increased privacy. The latest trend is to adopt a decentralized distributed architecture and transfer processing and storage resources to the network edge. This eliminates the bottleneck of cloud computing as it places data processing and analytics closer to the consumer. Machine learning (ML) is being increasingly utilized at the network edge to strengthen computer programs, specifically by reducing latency<span> and energy consumption while enhancing resource management and security. To achieve optimal outcomes in terms of efficiency, space, reliability, and safety with minimal power usage, intensive research is needed to develop and apply machine learning algorithms<span>. This comprehensive examination of prevalent computing paradigms underscores recent advancements resulting from the integration of machine learning and emerging computing models, while also addressing the underlying open research issues along with potential future directions. Because it is thought to open up new opportunities for both interdisciplinary research and commercial applications, we present a thorough assessment of the most recent works involving the convergence of deep learning with various computing paradigms, including cloud, fog, edge, and IoT, in this contribution. We also draw attention to the main issues and possible future lines of research. We hope this survey will spur additional study and contributions in this exciting area.</span></span></span></span></span></span></p></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013723000357","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
In recent times, the machine learning (ML) community has recognized the deep learning (DL) computing model as the Gold Standard. DL has gradually become the most widely used computational approach in the field of machine learning, achieving remarkable results in various complex cognitive tasks that are comparable to, or even surpassing human performance. One of the key benefits of DL is its ability to learn from vast amounts of data. In recent years, the DL field has witnessed rapid expansion and has found successful applications in various conventional areas. Significantly, DL has outperformed established ML techniques in multiple domains, such as cloud computing, robotics, cybersecurity, and several others. Nowadays, cloud computing has become crucial owing to the constant growth of the IoT network. It remains the finest approach for putting sophisticated computational applications into use, stressing the huge data processing. Nevertheless, the cloud falls short because of the crucial limitations of cutting-edge IoT applications that produce enormous amounts of data and necessitate a quick reaction time with increased privacy. The latest trend is to adopt a decentralized distributed architecture and transfer processing and storage resources to the network edge. This eliminates the bottleneck of cloud computing as it places data processing and analytics closer to the consumer. Machine learning (ML) is being increasingly utilized at the network edge to strengthen computer programs, specifically by reducing latency and energy consumption while enhancing resource management and security. To achieve optimal outcomes in terms of efficiency, space, reliability, and safety with minimal power usage, intensive research is needed to develop and apply machine learning algorithms. This comprehensive examination of prevalent computing paradigms underscores recent advancements resulting from the integration of machine learning and emerging computing models, while also addressing the underlying open research issues along with potential future directions. Because it is thought to open up new opportunities for both interdisciplinary research and commercial applications, we present a thorough assessment of the most recent works involving the convergence of deep learning with various computing paradigms, including cloud, fog, edge, and IoT, in this contribution. We also draw attention to the main issues and possible future lines of research. We hope this survey will spur additional study and contributions in this exciting area.
期刊介绍:
Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.