From symmetry to asymmetry: Generalizing TSP approximations by parametrization

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE Journal of Computer and System Sciences Pub Date : 2023-09-01 DOI:10.1016/j.jcss.2023.03.007
Lukas Behrendt , Katrin Casel , Tobias Friedrich , J.A. Gregor Lagodzinski , Alexander Löser , Marcus Wilhelm
{"title":"From symmetry to asymmetry: Generalizing TSP approximations by parametrization","authors":"Lukas Behrendt ,&nbsp;Katrin Casel ,&nbsp;Tobias Friedrich ,&nbsp;J.A. Gregor Lagodzinski ,&nbsp;Alexander Löser ,&nbsp;Marcus Wilhelm","doi":"10.1016/j.jcss.2023.03.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>We generalize the tree doubling and Christofides algorithm to parameterized approximations for ATSP (constant factor approximations that invest more runtime with respect to a chosen parameter). The parameters we consider are upper bounded by the number of </span><em>asymmetric distances</em><span>, which yields algorithms to efficiently compute good approximations for moderately asymmetric TSP instances. As generalization of the Christofides algorithm, we derive a parameterized 2.5-approximation, with the size of a vertex cover for the subgraph induced by the edges with asymmetric distances as parameter. Our generalization of tree doubling gives a parameterized 3-approximation, where the parameter is the minimum number of asymmetric distances in a minimum spanning arborescence. Further, we combine these with a notion of symmetry relaxation which allows to trade approximation guarantee for runtime. Since the parameters we consider are theoretically incomparable, we present experimental results showing that generalized tree doubling frequently outperforms generalized Christofides with respect to parameter size.</span></p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"136 ","pages":"Pages 157-170"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000429","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the tree doubling and Christofides algorithm to parameterized approximations for ATSP (constant factor approximations that invest more runtime with respect to a chosen parameter). The parameters we consider are upper bounded by the number of asymmetric distances, which yields algorithms to efficiently compute good approximations for moderately asymmetric TSP instances. As generalization of the Christofides algorithm, we derive a parameterized 2.5-approximation, with the size of a vertex cover for the subgraph induced by the edges with asymmetric distances as parameter. Our generalization of tree doubling gives a parameterized 3-approximation, where the parameter is the minimum number of asymmetric distances in a minimum spanning arborescence. Further, we combine these with a notion of symmetry relaxation which allows to trade approximation guarantee for runtime. Since the parameters we consider are theoretically incomparable, we present experimental results showing that generalized tree doubling frequently outperforms generalized Christofides with respect to parameter size.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从对称到不对称:用参数化推广TSP近似
我们将树加倍和Christofides算法推广到ATSP的参数化近似(相对于所选参数投入更多运行时间的常数因子近似)。我们考虑的参数是非对称距离数的上界,这产生了有效计算中等不对称TSP实例的良好近似值的算法。作为Christofides算法的推广,我们导出了一个参数化的2.5近似,以具有不对称距离的边诱导的子图的顶点覆盖的大小为参数。我们对树加倍的推广给出了一个参数化的3-近似,其中参数是最小生成树场景中非对称距离的最小数目。此外,我们将这些与对称松弛的概念相结合,该概念允许用近似保证换取运行时。由于我们考虑的参数在理论上是不可比的,我们给出的实验结果表明,广义树加倍在参数大小方面经常优于广义Christofides。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
期刊最新文献
Time-sharing scheduling with tolerance capacities Embedding hypercubes into torus and Cartesian product of paths and/or cycles for minimizing wirelength The parameterized complexity of the survivable network design problem Monitoring the edges of product networks using distances Algorithms and Turing kernels for detecting and counting small patterns in unit disk graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1