{"title":"Synthesis, fungicidal activity and molecular docking studies of tavaborole derivatives","authors":"Zhuo He , Dai-Chuan Huang , Dale Guo , Fang Deng , Qiang Sha , Ming-Zhi Zhang , Wei-Hua Zhang , Yu-Cheng Gu","doi":"10.1016/j.aac.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Benzoxaborole, a five-membered oxaborole ring fused with a phenyl ring, has demonstrated potent pharmacological activity. In order to explore their potential applications in agriculture, five-membered and six-membered benzoxaborole derivatives were synthesized and evaluated for their fungicidal activity against six common plant pathogenic fungi in vitro. The bioassay results showed that most of the target compounds exhibited significant fungicidal activity at concentrations below 50 μg/mL, particularly the highlighted compounds 4b and 4e, which demonstrated impressive fungicidal activity superior to those of the positive controls. Molecular docking was also performed to confirm the practical value of the active compound as a potential inhibitor of Leucyl-tRNA Synthetase (LeuRS). This study indicates that the designed benzoxaborole derivatives could serve as template molecules for the development of novel fungicides.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"2 2","pages":"Pages 185-195"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Agrochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773237123000278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Benzoxaborole, a five-membered oxaborole ring fused with a phenyl ring, has demonstrated potent pharmacological activity. In order to explore their potential applications in agriculture, five-membered and six-membered benzoxaborole derivatives were synthesized and evaluated for their fungicidal activity against six common plant pathogenic fungi in vitro. The bioassay results showed that most of the target compounds exhibited significant fungicidal activity at concentrations below 50 μg/mL, particularly the highlighted compounds 4b and 4e, which demonstrated impressive fungicidal activity superior to those of the positive controls. Molecular docking was also performed to confirm the practical value of the active compound as a potential inhibitor of Leucyl-tRNA Synthetase (LeuRS). This study indicates that the designed benzoxaborole derivatives could serve as template molecules for the development of novel fungicides.