On the uncertainty of a combined forecast: The critical role of correlation

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-10-01 DOI:10.1016/j.ijforecast.2022.10.002
Jan R. Magnus , Andrey L. Vasnev
{"title":"On the uncertainty of a combined forecast: The critical role of correlation","authors":"Jan R. Magnus ,&nbsp;Andrey L. Vasnev","doi":"10.1016/j.ijforecast.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to show that the effect of the zero-correlation assumption in combining forecasts can be huge, and that ignoring (positive) correlation can lead to confidence bands around the forecast combination that are much too narrow. In the typical case where three or more forecasts are combined, the estimated variance increases without bound when correlation increases. Intuitively, this is because similar forecasts provide little information if we know that they are highly correlated. Although we concentrate on forecast combinations and confidence bands, our theory applies to any statistic where the observations are linearly combined. We apply our theoretical results to explain why forecasts by central banks (in our case, the Bank of Japan and the European Central Bank) are so frequently misleadingly precise. In most cases ignoring correlation is harmful, and an estimated historical correlation or an imposed fixed correlation larger than 0.7 is required to produce credible confidence bands.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"39 4","pages":"Pages 1895-1908"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001406","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to show that the effect of the zero-correlation assumption in combining forecasts can be huge, and that ignoring (positive) correlation can lead to confidence bands around the forecast combination that are much too narrow. In the typical case where three or more forecasts are combined, the estimated variance increases without bound when correlation increases. Intuitively, this is because similar forecasts provide little information if we know that they are highly correlated. Although we concentrate on forecast combinations and confidence bands, our theory applies to any statistic where the observations are linearly combined. We apply our theoretical results to explain why forecasts by central banks (in our case, the Bank of Japan and the European Central Bank) are so frequently misleadingly precise. In most cases ignoring correlation is harmful, and an estimated historical correlation or an imposed fixed correlation larger than 0.7 is required to produce credible confidence bands.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论组合预测的不确定性:相关性的关键作用
本文的目的是表明,零相关性假设在组合预测中的影响可能是巨大的,而忽略(正)相关性可能会导致预测组合周围的置信区间过于狭窄。在三个或三个以上预测组合的典型情况下,当相关性增加时,估计方差无约束地增加。直观地说,这是因为如果我们知道类似的预测高度相关,那么它们提供的信息就很少。尽管我们专注于预测组合和置信区间,但我们的理论适用于任何观测值线性组合的统计数据。我们运用我们的理论结果来解释为什么各国央行(在我们的案例中,是日本央行和欧洲央行)的预测如此频繁地具有误导性的准确性。在大多数情况下,忽略相关性是有害的,需要估计的历史相关性或大于0.7的固定相关性来产生可信的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
Editorial Board Editorial Board Locally tail-scale invariant scoring rules for evaluation of extreme value forecasts Conditionally optimal weights and forward-looking approaches to combining forecasts A loss discounting framework for model averaging and selection in time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1