Characterizing the performance of node-aware strategies for irregular point-to-point communication on heterogeneous architectures

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2023-07-01 DOI:10.1016/j.parco.2023.103021
Shelby Lockhart , Amanda Bienz , William D. Gropp , Luke N. Olson
{"title":"Characterizing the performance of node-aware strategies for irregular point-to-point communication on heterogeneous architectures","authors":"Shelby Lockhart ,&nbsp;Amanda Bienz ,&nbsp;William D. Gropp ,&nbsp;Luke N. Olson","doi":"10.1016/j.parco.2023.103021","DOIUrl":null,"url":null,"abstract":"<div><p>Supercomputer architectures are trending toward higher computational throughput due to the inclusion of heterogeneous compute nodes. These multi-GPU nodes increase on-node computational efficiency, while also increasing the amount of data to be communicated and the number of potential data flow paths. In this work, we characterize the performance of irregular point-to-point communication with MPI on heterogeneous compute environments through performance modeling, demonstrating the limitations of standard communication strategies for both device-aware and staging-through-host communication techniques. Presented models suggest staging communicated data through host processes then using node-aware communication strategies for high inter-node message counts. Notably, the models also predict that node-aware communication utilizing all available CPU cores to communicate inter-node data leads to the most performant strategy when communicating with a high number of nodes. Model validation is provided via a case study of irregular point-to-point communication patterns in distributed sparse matrix–vector products. Importantly, we include a discussion on the implications model predictions have on communication strategy design for emerging supercomputer architectures.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"116 ","pages":"Article 103021"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000273","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Supercomputer architectures are trending toward higher computational throughput due to the inclusion of heterogeneous compute nodes. These multi-GPU nodes increase on-node computational efficiency, while also increasing the amount of data to be communicated and the number of potential data flow paths. In this work, we characterize the performance of irregular point-to-point communication with MPI on heterogeneous compute environments through performance modeling, demonstrating the limitations of standard communication strategies for both device-aware and staging-through-host communication techniques. Presented models suggest staging communicated data through host processes then using node-aware communication strategies for high inter-node message counts. Notably, the models also predict that node-aware communication utilizing all available CPU cores to communicate inter-node data leads to the most performant strategy when communicating with a high number of nodes. Model validation is provided via a case study of irregular point-to-point communication patterns in distributed sparse matrix–vector products. Importantly, we include a discussion on the implications model predictions have on communication strategy design for emerging supercomputer architectures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构体系结构中不规则点对点通信节点感知策略的性能表征
由于包含了异构计算节点,超级计算机体系结构正朝着更高的计算吞吐量发展。这些多GPU节点提高了节点上的计算效率,同时也增加了要通信的数据量和潜在数据流路径的数量。在这项工作中,我们通过性能建模描述了在异构计算环境中使用MPI进行不规则点对点通信的性能,展示了设备感知和通过主机通信技术进行分级的标准通信策略的局限性。所提出的模型建议通过主机进程暂存通信数据,然后使用节点感知通信策略来实现高节点间消息计数。值得注意的是,模型还预测,当与大量节点通信时,利用所有可用的CPU核心来通信节点间数据的节点感知通信会导致最具性能的策略。通过对分布式稀疏矩阵-矢量产品中不规则点对点通信模式的案例研究,提供了模型验证。重要的是,我们讨论了模型预测对新兴超级计算机架构的通信策略设计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1