MOTT: A new model for multi-object tracking based on green learning paradigm

Shan Wu , Amnir Hadachi , Chaoru Lu , Damien Vivet
{"title":"MOTT: A new model for multi-object tracking based on green learning paradigm","authors":"Shan Wu ,&nbsp;Amnir Hadachi ,&nbsp;Chaoru Lu ,&nbsp;Damien Vivet","doi":"10.1016/j.aiopen.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-object tracking (MOT) is one of the most essential and challenging tasks in computer vision (CV). Unlike object detectors, MOT systems nowadays are more complicated and consist of several neural network models. Thus, the balance between the system performance and the runtime is crucial for online scenarios. While some of the works contribute by adding more modules to achieve improvements, we propose a pruned model by leveraging the state-of-the-art Transformer backbone model. Our model saves up to 62% FLOPS compared with other Transformer-based models and almost as twice as fast as them. The results of the proposed model are still competitive among the state-of-the-art methods. Moreover, we will open-source our modified Transformer backbone model for general CV tasks as well as the MOT system.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"4 ","pages":"Pages 145-153"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-object tracking (MOT) is one of the most essential and challenging tasks in computer vision (CV). Unlike object detectors, MOT systems nowadays are more complicated and consist of several neural network models. Thus, the balance between the system performance and the runtime is crucial for online scenarios. While some of the works contribute by adding more modules to achieve improvements, we propose a pruned model by leveraging the state-of-the-art Transformer backbone model. Our model saves up to 62% FLOPS compared with other Transformer-based models and almost as twice as fast as them. The results of the proposed model are still competitive among the state-of-the-art methods. Moreover, we will open-source our modified Transformer backbone model for general CV tasks as well as the MOT system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOTT:基于绿色学习范式的多目标跟踪新模型
多目标跟踪(MOT)是计算机视觉(CV)中最重要和最具挑战性的任务之一。与物体探测器不同,MOT系统现在更加复杂,由几个神经网络模型组成。因此,系统性能和运行时间之间的平衡对于在线场景至关重要。虽然一些工作通过添加更多模块来实现改进,但我们通过利用最先进的Transformer主干模型提出了一个精简模型。与其他基于Transformer的模型相比,我们的模型节省了高达62%的FLOPS,速度几乎是它们的两倍。所提出的模型的结果在最先进的方法中仍然具有竞争力。此外,我们将为通用CV任务和MOT系统开源我们修改后的Transformer主干模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1