Kirsten Hillebrand , Lars Hornuf , Benjamin Müller , Daniel Vrankar
{"title":"The social dilemma of big data: Donating personal data to promote social welfare","authors":"Kirsten Hillebrand , Lars Hornuf , Benjamin Müller , Daniel Vrankar","doi":"10.1016/j.infoandorg.2023.100452","DOIUrl":null,"url":null,"abstract":"<div><p>When using digital devices and services, individuals provide their personal data to organizations in exchange for gains in various domains of life. Organizations use these data to run technologies such as smart assistants, augmented reality, and robotics. Most often, these organizations seek to make a profit. Individuals can, however, also provide personal data to public databases that enable nonprofit organizations to promote social welfare if sufficient data are contributed. Regulators have therefore called for efficient ways to help the public collectively benefit from its own data. By implementing an online experiment among 1696 US citizens, we find that individuals would donate their data even when at risk of getting leaked. The willingness to provide personal data depends on the perceived risk level of a data leak but not on a realistic impact of the data on social welfare. Individuals are less willing to donate their data to the private industry than to academia or the government. Finally, individuals are not sensitive to whether the data are processed by a human-supervised or a self-learning smart assistant.</p></div>","PeriodicalId":47253,"journal":{"name":"Information and Organization","volume":"33 1","pages":"Article 100452"},"PeriodicalIF":5.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Organization","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471772723000064","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
When using digital devices and services, individuals provide their personal data to organizations in exchange for gains in various domains of life. Organizations use these data to run technologies such as smart assistants, augmented reality, and robotics. Most often, these organizations seek to make a profit. Individuals can, however, also provide personal data to public databases that enable nonprofit organizations to promote social welfare if sufficient data are contributed. Regulators have therefore called for efficient ways to help the public collectively benefit from its own data. By implementing an online experiment among 1696 US citizens, we find that individuals would donate their data even when at risk of getting leaked. The willingness to provide personal data depends on the perceived risk level of a data leak but not on a realistic impact of the data on social welfare. Individuals are less willing to donate their data to the private industry than to academia or the government. Finally, individuals are not sensitive to whether the data are processed by a human-supervised or a self-learning smart assistant.
期刊介绍:
Advances in information and communication technologies are associated with a wide and increasing range of social consequences, which are experienced by individuals, work groups, organizations, interorganizational networks, and societies at large. Information technologies are implicated in all industries and in public as well as private enterprises. Understanding the relationships between information technologies and social organization is an increasingly important and urgent social and scholarly concern in many disciplinary fields.Information and Organization seeks to publish original scholarly articles on the relationships between information technologies and social organization. It seeks a scholarly understanding that is based on empirical research and relevant theory.