Modification of histones by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl) alters their reactivity with vascular smooth muscle cells

Els A. Hartsema, Line A.E. Hallberg, Kristine Barlous, Clare L. Hawkins
{"title":"Modification of histones by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl) alters their reactivity with vascular smooth muscle cells","authors":"Els A. Hartsema,&nbsp;Line A.E. Hallberg,&nbsp;Kristine Barlous,&nbsp;Clare L. Hawkins","doi":"10.1016/j.rbc.2023.100010","DOIUrl":null,"url":null,"abstract":"<div><p>In the nucleus, histones are essential in the packaging of DNA and the regulation of gene expression. These histones can also be released to the extracellular space by mechanisms such as necrosis and neutrophil extracellular trap (NET) formation. Histones are cytotoxic and cause sterile inflammation, and as a result, have been implicated in tissue damage in several pathologies, including atherosclerosis. Myeloperoxidase (MPO) is also present on NETs, which is catalytically active and able to produce hypochlorous acid (HOCl). This could modify histones and alter their extracellular reactivity. In this study, we compared the reactivity of histones with and without modification by HOCl with primary human coronary artery smooth muscle cells (HCASMCs). Histones induced a loss in viability and cell death primarily by apoptosis, which was attenuated on modification of the histones by HOCl. Exposure of HCASMCs to histones also resulted in the increased expression of the pro-inflammatory genes monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) and a decrease in intracellular thiols. In addition, there were changes in the expression of the stress related gene heme oxygenase-1 (HO-1). Modification of the histones with HOCl had no significant influence on changes in gene expression or thiol loss, in contrast to the cytotoxicity studies. Together, these studies provide new insight into the pathways by which histones could promote vascular dysfunction, which could be relevant to inflammatory diseases, such as atherosclerosis and sepsis, which are associated with elevated NET release and high circulating histones, respectively.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biochemistry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773176623000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the nucleus, histones are essential in the packaging of DNA and the regulation of gene expression. These histones can also be released to the extracellular space by mechanisms such as necrosis and neutrophil extracellular trap (NET) formation. Histones are cytotoxic and cause sterile inflammation, and as a result, have been implicated in tissue damage in several pathologies, including atherosclerosis. Myeloperoxidase (MPO) is also present on NETs, which is catalytically active and able to produce hypochlorous acid (HOCl). This could modify histones and alter their extracellular reactivity. In this study, we compared the reactivity of histones with and without modification by HOCl with primary human coronary artery smooth muscle cells (HCASMCs). Histones induced a loss in viability and cell death primarily by apoptosis, which was attenuated on modification of the histones by HOCl. Exposure of HCASMCs to histones also resulted in the increased expression of the pro-inflammatory genes monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) and a decrease in intracellular thiols. In addition, there were changes in the expression of the stress related gene heme oxygenase-1 (HO-1). Modification of the histones with HOCl had no significant influence on changes in gene expression or thiol loss, in contrast to the cytotoxicity studies. Together, these studies provide new insight into the pathways by which histones could promote vascular dysfunction, which could be relevant to inflammatory diseases, such as atherosclerosis and sepsis, which are associated with elevated NET release and high circulating histones, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
髓过氧化物酶衍生的氧化剂次氯酸(HOCl)对组蛋白的修饰改变了它们与血管平滑肌细胞的反应性
在细胞核中,组蛋白在DNA的包装和基因表达的调控中是必不可少的。这些组蛋白也可以通过坏死和中性粒细胞外陷阱(NET)形成等机制释放到细胞外空间。组蛋白具有细胞毒性,可引起无菌炎症,因此与包括动脉粥样硬化在内的多种病理中的组织损伤有关。髓过氧化物酶(MPO)也存在于NETs上,它具有催化活性,能够产生次氯酸(HOCl)。这可以改变组蛋白并改变其细胞外反应性。在本研究中,我们比较了HOCl修饰组蛋白和未经HOCl修饰的组蛋白与原代人冠状动脉平滑肌细胞(HCASMCs)的反应性。组蛋白主要通过细胞凋亡诱导生存能力丧失和细胞死亡,HOCl修饰组蛋白后细胞凋亡减弱。HCASMCs暴露于组蛋白还导致促炎基因单核细胞趋化蛋白-1(MCP-1)、白细胞介素-6(IL-6)和血管细胞粘附分子-1(VCAM-1)的表达增加,并导致细胞内硫醇的减少。此外,应激相关基因血红素加氧酶-1(HO-1)的表达也发生了变化。与细胞毒性研究相比,用HOCl修饰组蛋白对基因表达或硫醇损失的变化没有显著影响。总之,这些研究为组蛋白促进血管功能障碍的途径提供了新的见解,这可能与炎症性疾病有关,如动脉粥样硬化和败血症,它们分别与NET释放和高循环组蛋白有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perceptions of peroxynitrite reactivity – Then and now Boronate-based bioactive compounds activated by peroxynitrite and hydrogen peroxide Reaction of peroxynitrite with thiols, hydrogen sulfide and persulfides Peroxynitrite: A tale of two radicals NADPH oxidase 5: Where are we now and which way to proceed?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1