Real-time density nowcasts of US inflation: A model combination approach

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-10-01 DOI:10.1016/j.ijforecast.2022.04.007
Edward S. Knotek II, Saeed Zaman
{"title":"Real-time density nowcasts of US inflation: A model combination approach","authors":"Edward S. Knotek II,&nbsp;Saeed Zaman","doi":"10.1016/j.ijforecast.2022.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a flexible modeling framework to produce density nowcasts for US inflation at a trading-day frequency. Our framework (1) combines individual density nowcasts from three classes of parsimonious mixed-frequency models; (2) adopts a novel flexible treatment in the use of the aggregation function; and (3) permits dynamic model averaging via the use of weights that are updated based on learning from past performance. These features provide density nowcasts that can potentially accommodate non-Gaussian properties. We document the competitive properties of the nowcasts generated from our framework using high-frequency real-time data over the period 2000–2015.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"39 4","pages":"Pages 1736-1760"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022000589","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a flexible modeling framework to produce density nowcasts for US inflation at a trading-day frequency. Our framework (1) combines individual density nowcasts from three classes of parsimonious mixed-frequency models; (2) adopts a novel flexible treatment in the use of the aggregation function; and (3) permits dynamic model averaging via the use of weights that are updated based on learning from past performance. These features provide density nowcasts that can potentially accommodate non-Gaussian properties. We document the competitive properties of the nowcasts generated from our framework using high-frequency real-time data over the period 2000–2015.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国通货膨胀的实时密度预报:一种模型组合方法
我们开发了一个灵活的建模框架,以产生交易日频率的美国通胀密度预测。我们的框架(1)结合了来自三类简约混合频率模型的个体密度nowcast;(2) 在使用聚合函数时采用了一种新颖灵活的处理方式;以及(3)允许通过使用基于从过去性能学习而更新的权重来进行动态模型平均。这些特征提供了可以潜在地适应非高斯特性的密度nowcast。我们使用2000-2015年期间的高频实时数据,记录了我们框架生成的即时广播的竞争特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
Editorial Board Forecasting house price growth rates with factor models and spatio-temporal clustering Forecasting realized volatility with spillover effects: Perspectives from graph neural networks Sparse time-varying parameter VECMs with an application to modeling electricity prices Guest editorial: Forecasting for social good
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1