Martín Menchón , Estefania Talavera , José Massa , Petia Radeva
{"title":"Behavioural patterns discovery for lifestyle analysis from egocentric photo-streams","authors":"Martín Menchón , Estefania Talavera , José Massa , Petia Radeva","doi":"10.1016/j.pmcj.2023.101846","DOIUrl":null,"url":null,"abstract":"<div><p>Automatic tools for the analysis of human behaviour are very important when aiming to understand the lifestyle of people. Egocentric wearable cameras allow the capture of images during long periods of time and in this way bring objective evidence of the experiences of the user.</p><p>In this paper, we propose a novel framework to discover behavioural patterns following an unsupervised greedy approach based on extracted image descriptors. The method collects and constructs time-frames to extract the semantics of user behaviour in terms of contextual information, such as places, activity, present objects, and others. Later, the similarity among the user time-frames is computed to assess correlations and thus obtain the user’s routine descriptors. To evaluate the performance of our method, we present several score metrics and compare them to state-of-the-art works in the field. We validated our method on 315 days and more than 390,000 images extracted from 14 users. Results show that behavioural patterns can be successfully discovered and that they are able to characterize the routine of people bringing important information about their lifestyle and behaviour change.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"95 ","pages":"Article 101846"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223001049","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic tools for the analysis of human behaviour are very important when aiming to understand the lifestyle of people. Egocentric wearable cameras allow the capture of images during long periods of time and in this way bring objective evidence of the experiences of the user.
In this paper, we propose a novel framework to discover behavioural patterns following an unsupervised greedy approach based on extracted image descriptors. The method collects and constructs time-frames to extract the semantics of user behaviour in terms of contextual information, such as places, activity, present objects, and others. Later, the similarity among the user time-frames is computed to assess correlations and thus obtain the user’s routine descriptors. To evaluate the performance of our method, we present several score metrics and compare them to state-of-the-art works in the field. We validated our method on 315 days and more than 390,000 images extracted from 14 users. Results show that behavioural patterns can be successfully discovered and that they are able to characterize the routine of people bringing important information about their lifestyle and behaviour change.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.