Co-simulation of hydrofacies and piezometric data in the West Thessaly basin, Greece: A geostatistical application using the GeoSim R package

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-10-06 DOI:10.1016/j.acags.2023.100139
George Valakas, Matina Seferli, Konstantinos Modis
{"title":"Co-simulation of hydrofacies and piezometric data in the West Thessaly basin, Greece: A geostatistical application using the GeoSim R package","authors":"George Valakas,&nbsp;Matina Seferli,&nbsp;Konstantinos Modis","doi":"10.1016/j.acags.2023.100139","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we co-simulate hydrofacies and piezometric data in order to construct geostatistical realizations of underground geology in an area of the West Thessaly basin. This basin is of great importance in terms of sustainable water management and environmental perspective in Greece. Through Plurigaussian modeling, the hydrofacies are first transformed into Gaussian Random Fields. Then, a Linear Coregionalization Model is established to account for the dependencies between hydrofacies and the Normal scores of piezometric data. The effect of co-simulation shows an improvement of the facies transition probabilities in comparison with those of Plurigaussian simulation. For the purpose of this study, we use the GeoSim package in R developed by our team for the implementation of Plurigaussian simulation and co-simulation.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"20 ","pages":"Article 100139"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, we co-simulate hydrofacies and piezometric data in order to construct geostatistical realizations of underground geology in an area of the West Thessaly basin. This basin is of great importance in terms of sustainable water management and environmental perspective in Greece. Through Plurigaussian modeling, the hydrofacies are first transformed into Gaussian Random Fields. Then, a Linear Coregionalization Model is established to account for the dependencies between hydrofacies and the Normal scores of piezometric data. The effect of co-simulation shows an improvement of the facies transition probabilities in comparison with those of Plurigaussian simulation. For the purpose of this study, we use the GeoSim package in R developed by our team for the implementation of Plurigaussian simulation and co-simulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
希腊西色萨利盆地水相和压力测量数据的联合模拟:使用GeoSim R包的地质统计学应用
在本研究中,我们共同模拟了水文相和测压数据,以构建西色萨利盆地一个地区地下地质的地质统计实现。该流域在希腊的可持续水管理和环境方面具有重要意义。通过Plurigussian模型,首先将流体相转化为高斯随机场。然后,建立了一个线性区域化模型,以解释水压测量数据的水文相和正态分数之间的相关性。联合模拟的效果表明,与Plurigussian模拟相比,相变概率有所提高。出于本研究的目的,我们使用我们团队开发的R中的GeoSim包来实现Plurigussian模拟和联合模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
A machine learning approach for mapping susceptibility to land subsidence caused by ground water extraction Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1