Development of the Synthetic Unit Hydrograph Tool – SUnHyT

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-10-06 DOI:10.1016/j.acags.2023.100138
Camyla Innocente dos Santos , Tomas Carlotto , Leonardo Vilela Steiner , Pedro Luiz Borges Chaffe
{"title":"Development of the Synthetic Unit Hydrograph Tool – SUnHyT","authors":"Camyla Innocente dos Santos ,&nbsp;Tomas Carlotto ,&nbsp;Leonardo Vilela Steiner ,&nbsp;Pedro Luiz Borges Chaffe","doi":"10.1016/j.acags.2023.100138","DOIUrl":null,"url":null,"abstract":"<div><p>Unit hydrographs (UH) are widely used in scientific research and engineering projects to simulate rainfall-runoff processes. There are four main approaches for calculating UH: the traditional, the conceptual, the probabilistic, and the geomorphological approaches. Most software designed to facilitate the estimation of UH is usually based on only one UH approach, limiting its applicability for scientific hypotheses testing. This paper presents the Synthetic Unit Hydrograph Tool (SUnHyT), which provides nine different UH models from the four main approaches used in UH applications. SUnHyT is an open-source application that can be used intuitively through a graphical user interface. We tested the model in a case study that highlights the need for alternative approaches of UH when the traditional approach does not perform well. SUnHyT allows the estimation of design hydrographs in gauged and ungauged catchments and can be useful for hydrologists, water managers and decision-makers.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"20 ","pages":"Article 100138"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Unit hydrographs (UH) are widely used in scientific research and engineering projects to simulate rainfall-runoff processes. There are four main approaches for calculating UH: the traditional, the conceptual, the probabilistic, and the geomorphological approaches. Most software designed to facilitate the estimation of UH is usually based on only one UH approach, limiting its applicability for scientific hypotheses testing. This paper presents the Synthetic Unit Hydrograph Tool (SUnHyT), which provides nine different UH models from the four main approaches used in UH applications. SUnHyT is an open-source application that can be used intuitively through a graphical user interface. We tested the model in a case study that highlights the need for alternative approaches of UH when the traditional approach does not perform well. SUnHyT allows the estimation of design hydrographs in gauged and ungauged catchments and can be useful for hydrologists, water managers and decision-makers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SUnHyT合成单元海道测量仪的研制
单位过程线(UH)在科学研究和工程项目中被广泛用于模拟降雨径流过程。UH的计算主要有四种方法:传统方法、概念方法、概率方法和地貌方法。大多数旨在促进UH估计的软件通常只基于一种UH方法,这限制了其在科学假设测试中的适用性。本文介绍了合成单位过程线工具(SUnHyT),该工具从UH应用中使用的四种主要方法中提供了九种不同的UH模型。SUnHyT是一个开源应用程序,可以通过图形用户界面直观地使用。我们在一个案例研究中测试了该模型,该研究强调了当传统方法表现不佳时,需要替代UH方法。SUnHyT可以估计测量和未测量集水区的设计水文线,对水文学家、水资源管理者和决策者都很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1