Capping strategy for electrocatalysts with ultra-low platinum metal loading

Shasha Guo , Chao Chen , Mengyi Qiu , Xun Cao , Zude Shi , Mingyu Ma , Jun Di , Shuzhou Li , Chao Zhu , Yongmin He , Zheng Liu
{"title":"Capping strategy for electrocatalysts with ultra-low platinum metal loading","authors":"Shasha Guo ,&nbsp;Chao Chen ,&nbsp;Mengyi Qiu ,&nbsp;Xun Cao ,&nbsp;Zude Shi ,&nbsp;Mingyu Ma ,&nbsp;Jun Di ,&nbsp;Shuzhou Li ,&nbsp;Chao Zhu ,&nbsp;Yongmin He ,&nbsp;Zheng Liu","doi":"10.1016/j.mtcata.2023.100022","DOIUrl":null,"url":null,"abstract":"<div><p>The urgent demand for terawatt-scale clean energy necessitates the rational design of noble metal catalysts with minimal noble metal loading while maintaining high catalytic activity. However, the durability of low-loading catalysts is a critical concern for their successful industrial implementation. Here, we present a capping strategy using an amorphous HfO<sub>2</sub> (m-HfO<sub>2</sub>) to address this issue. Take Pt/C catalysts with Pt loading as low as 81.39 ng cm<sup>−2</sup> as an example, we demonstrate that the m-HfO<sub>2</sub> layer (10 nm) serves as an efficient mass transport channel for underneath Pt active sites, and effectively mitigates bubble-induced blockage of active sites by separating bubble formation sites with Pt active sites. Thus, the resulting catalyst exhibits a remarkable mass activity of 122.87 A mg<sup>−1</sup> and an overpotential of 11 mV at 10 mA cm<sup>−2</sup>. Furthermore, the m-HfO<sub>2</sub> plays a crucial role in eliminating the structural transformation and extending the lifetime of Pt-based catalysts, as evidenced by no loss of specific activity after consecutively cycling the catalyst for over 100 h. Such a capping strategy is potentially applied to other types of reactions and catalyst systems.</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"3 ","pages":"Article 100022"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X23000224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The urgent demand for terawatt-scale clean energy necessitates the rational design of noble metal catalysts with minimal noble metal loading while maintaining high catalytic activity. However, the durability of low-loading catalysts is a critical concern for their successful industrial implementation. Here, we present a capping strategy using an amorphous HfO2 (m-HfO2) to address this issue. Take Pt/C catalysts with Pt loading as low as 81.39 ng cm−2 as an example, we demonstrate that the m-HfO2 layer (10 nm) serves as an efficient mass transport channel for underneath Pt active sites, and effectively mitigates bubble-induced blockage of active sites by separating bubble formation sites with Pt active sites. Thus, the resulting catalyst exhibits a remarkable mass activity of 122.87 A mg−1 and an overpotential of 11 mV at 10 mA cm−2. Furthermore, the m-HfO2 plays a crucial role in eliminating the structural transformation and extending the lifetime of Pt-based catalysts, as evidenced by no loss of specific activity after consecutively cycling the catalyst for over 100 h. Such a capping strategy is potentially applied to other types of reactions and catalyst systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低铂金属负载电催化剂的封盖策略
对太瓦级清洁能源的迫切需求需要在保持高催化活性的同时,合理设计具有最小贵金属负载量的贵金属催化剂。然而,低负载量催化剂的耐久性是其成功工业化实施的关键问题。在这里,我们提出了一种使用非晶HfO2(m-HfO2)的封端策略来解决这个问题。以Pt负载量低至81.39 ng cm−2的Pt/C催化剂为例,我们证明m-HfO2层(10nm)是Pt活性位点下方的有效传质通道,并通过将气泡形成位点与Pt活性位分离来有效缓解气泡诱导的活性位点堵塞。因此,所得催化剂表现出122.87 a mg−1的显著质量活性和10 mA cm−2时11 mV的过电位。此外,m-HfO2在消除Pt基催化剂的结构转变和延长其寿命方面发挥着至关重要的作用,在连续循环催化剂超过100小时后没有损失比活性证明了这一点。这种封端策略有可能应用于其他类型的反应和催化剂体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1