{"title":"MXene-supported single-atom and nano catalysts for effective gas-phase hydrogenation reactions","authors":"Yilong Yan , Djibril Sall , Lola Loupias , Stéphane Célérier , Mimoun Aouine , Pascal Bargiela , Mathieu Prévot , Franck Morfin , Laurent Piccolo","doi":"10.1016/j.mtcata.2023.100010","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal carbides are known as efficient catalysts or catalyst supports and two-dimensional carbides (MXenes) offer renewed possibilities to anchor metal atoms and promote catalytic performances. This paper first presents an in-depth study of the elaboration of Pt or Pd-loaded Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXenes and their unstacking for gas-phase catalysis investigations, along with step-by-step characterization by XRD, XPS, SEM and STEM. In particular, the influence of the MXene preparation method (HF <em>vs</em>. LiF-HCl etchants) on surface structure/composition and metal dispersion/oxidation state is disclosed. Second, the catalytic hydrogenation performances of these materials are reported, and reveal the interest of low-loaded Pt/MXene single-atom catalysts in terms of activity, selectivity and resistance to sintering. They present an unusually high selectivity to 2-butene – without butane formation – in butadiene hydrogenation, a model reaction of applied interest for the petrochemical industry. Moreover, in CO<sub>2</sub> reduction to CO (reverse water-gas shift reaction, relevant to greenhouse-gas valorization), these catalysts exhibit up to 99 % selectivity and a superior Pt-molar activity with respect to oxide-supported references. This work may stimulate the elaboration and investigation of other MXene-based systems for thermal heterogeneous catalysis, which remains rarely addressed on these materials.</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"2 ","pages":"Article 100010"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X23000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal carbides are known as efficient catalysts or catalyst supports and two-dimensional carbides (MXenes) offer renewed possibilities to anchor metal atoms and promote catalytic performances. This paper first presents an in-depth study of the elaboration of Pt or Pd-loaded Ti3C2Tx MXenes and their unstacking for gas-phase catalysis investigations, along with step-by-step characterization by XRD, XPS, SEM and STEM. In particular, the influence of the MXene preparation method (HF vs. LiF-HCl etchants) on surface structure/composition and metal dispersion/oxidation state is disclosed. Second, the catalytic hydrogenation performances of these materials are reported, and reveal the interest of low-loaded Pt/MXene single-atom catalysts in terms of activity, selectivity and resistance to sintering. They present an unusually high selectivity to 2-butene – without butane formation – in butadiene hydrogenation, a model reaction of applied interest for the petrochemical industry. Moreover, in CO2 reduction to CO (reverse water-gas shift reaction, relevant to greenhouse-gas valorization), these catalysts exhibit up to 99 % selectivity and a superior Pt-molar activity with respect to oxide-supported references. This work may stimulate the elaboration and investigation of other MXene-based systems for thermal heterogeneous catalysis, which remains rarely addressed on these materials.