Nonlinear anisotropic diffusion methods for image denoising problems: Challenges and future research opportunities

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2023-03-01 DOI:10.1016/j.array.2022.100265
Baraka Maiseli
{"title":"Nonlinear anisotropic diffusion methods for image denoising problems: Challenges and future research opportunities","authors":"Baraka Maiseli","doi":"10.1016/j.array.2022.100265","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear anisotropic diffusion has attracted a great deal of attention for its ability to simultaneously remove noise and preserve semantic image features. This ability favors several image processing and computer vision applications, including noise removal in medical and scientific images that contain critical features (textures, edges, and contours). Despite their promising performance, methods based on nonlinear anisotropic diffusion suffer from practical limitations that have been lightly discussed in the literature. Our work surfaces these limitations as an attempt to create future research opportunities. In addition, we have proposed a diffusion-driven method that generates superior results compared with classical methods, including the popular Perona–Malik formulation. The proposed method embeds a kernel that properly guides the diffusion process across image regions. Experimental results show that our kernel encourages effective noise removal and ensures preservation of significant image features. We have provided potential research problems to further expand the current results.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"17 ","pages":"Article 100265"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005622000984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear anisotropic diffusion has attracted a great deal of attention for its ability to simultaneously remove noise and preserve semantic image features. This ability favors several image processing and computer vision applications, including noise removal in medical and scientific images that contain critical features (textures, edges, and contours). Despite their promising performance, methods based on nonlinear anisotropic diffusion suffer from practical limitations that have been lightly discussed in the literature. Our work surfaces these limitations as an attempt to create future research opportunities. In addition, we have proposed a diffusion-driven method that generates superior results compared with classical methods, including the popular Perona–Malik formulation. The proposed method embeds a kernel that properly guides the diffusion process across image regions. Experimental results show that our kernel encourages effective noise removal and ensures preservation of significant image features. We have provided potential research problems to further expand the current results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像去噪问题的非线性各向异性扩散方法:挑战与未来研究机会
非线性各向异性扩散由于其能够同时去除噪声和保留语义图像特征而引起了人们的广泛关注。这种能力有利于多种图像处理和计算机视觉应用,包括医学和科学图像中包含关键特征(纹理、边缘和轮廓)的噪声去除。尽管基于非线性各向异性扩散的方法具有良好的性能,但其实际局限性在文献中很少讨论。我们的工作揭示了这些局限性,试图创造未来的研究机会。此外,我们还提出了一种扩散驱动的方法,与经典方法相比,该方法产生了更好的结果,包括流行的Perona–Malik公式。所提出的方法嵌入了一个内核,该内核正确地引导图像区域之间的扩散过程。实验结果表明,我们的内核有助于有效地去除噪声,并确保保留重要的图像特征。我们提供了潜在的研究问题,以进一步扩展当前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
SAMU-Net: A dual-stage polyp segmentation network with a custom attention-based U-Net and segment anything model for enhanced mask prediction Combining computational linguistics with sentence embedding to create a zero-shot NLIDB Development of automatic CNC machine with versatile applications in art, design, and engineering Dual-model approach for one-shot lithium-ion battery state of health sequence prediction Maximizing influence via link prediction in evolving networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1