Skew-polynomial-sparse matrix multiplication

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Journal of Symbolic Computation Pub Date : 2023-07-03 DOI:10.1016/j.jsc.2023.102240
Qiao-Long Huang , Ke Ye , Xiao-Shan Gao
{"title":"Skew-polynomial-sparse matrix multiplication","authors":"Qiao-Long Huang ,&nbsp;Ke Ye ,&nbsp;Xiao-Shan Gao","doi":"10.1016/j.jsc.2023.102240","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the observation that <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>×</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> is isomorphic to a quotient skew polynomial ring, we propose a new deterministic algorithm for <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>×</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> matrix multiplication over <span><math><mi>Q</mi></math></span>, where <em>p</em> is a prime number. The algorithm has complexity <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>ω</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>T</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is a parameter determined by the skew-polynomial-sparsity of input matrices and <em>ω</em><span> is the asymptotic exponent of matrix multiplication<span>. Here a matrix is skew-polynomial-sparse if its corresponding skew polynomial is sparse. Moreover, by introducing randomness, we also propose a probabilistic algorithm with complexity </span></span><span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>∼</mo></mrow></msup><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>ω</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ν</mi></mrow></mfrac><mo>)</mo></math></span>, where <span><math><mi>t</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is the skew-polynomial-sparsity of the product and <em>ν</em><span> is the probability parameter. The main feature of the algorithms is the acceleration for matrix multiplication if the input matrices or their products are skew-polynomial-sparse.</span></p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"121 ","pages":"Article 102240"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000548","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the observation that Q(p1)×(p1) is isomorphic to a quotient skew polynomial ring, we propose a new deterministic algorithm for (p1)×(p1) matrix multiplication over Q, where p is a prime number. The algorithm has complexity O(Tω2p2), where Tp1 is a parameter determined by the skew-polynomial-sparsity of input matrices and ω is the asymptotic exponent of matrix multiplication. Here a matrix is skew-polynomial-sparse if its corresponding skew polynomial is sparse. Moreover, by introducing randomness, we also propose a probabilistic algorithm with complexity O(tω2p2+p2log1ν), where tp1 is the skew-polynomial-sparsity of the product and ν is the probability parameter. The main feature of the algorithms is the acceleration for matrix multiplication if the input matrices or their products are skew-polynomial-sparse.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斜多项式-稀疏矩阵乘法
在观察到Q(p−1)×(p−2)同构于商斜多项式环的基础上,我们提出了一种新的Q上(p−3)×(p−1)矩阵乘法的确定算法,其中p是素数。该算法的复杂度为O(Tω−2p2),其中T≤p−1是由输入矩阵的斜多项式稀疏性决定的参数,ω是矩阵乘法的渐近指数。这里,如果矩阵对应的偏斜多项式是稀疏的,则矩阵是偏斜多项式稀疏的。此外,通过引入随机性,我们还提出了一种复杂度为O~(tω−2p2+p2log)的概率算法⁡1Γ),其中t≤p−1是乘积的偏斜多项式稀疏性,Γ是概率参数。如果输入矩阵或其乘积是斜多项式稀疏的,则该算法的主要特征是矩阵乘法的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
期刊最新文献
Algebraic and algorithmic methods for computing polynomial loop invariants A computational approach to rational summability and its applications via discrete residues Algorithms for 2-solvable difference equations Strongly and transitive chordal graphs and their applications in complexity analysis of triangular decomposition Superspecial genus-4 double covers of elliptic curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1