A parallel non-convex approximation framework for risk parity portfolio design

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2023-07-01 DOI:10.1016/j.parco.2023.102999
Yidong Chen , Chen Li , Yonghong Hu , Zhonghua Lu
{"title":"A parallel non-convex approximation framework for risk parity portfolio design","authors":"Yidong Chen ,&nbsp;Chen Li ,&nbsp;Yonghong Hu ,&nbsp;Zhonghua Lu","doi":"10.1016/j.parco.2023.102999","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a parallel non-convex approximation framework (NCAQ) for optimization problems whose objective is to minimize a convex function plus the sum of non-convex functions. Based on the structure of the objective function, our framework transforms the non-convex constraints to the logarithmic barrier function and approximates the non-convex problem by a parallel quadratic approximation scheme, which will allow the original problem to be solved by accelerated inexact gradient descent in the parallel environment. Moreover, we give a detailed convergence analysis for the proposed framework. The numerical experiments show that our framework outperforms the state-of-art approaches in terms of accuracy and computation time on the high dimension non-convex Rosenbrock test functions and the risk parity problems. In particular, we implement the proposed framework on CUDA, showing a more than 25 times speed-up ratio and removing the computational bottleneck for non-convex risk-parity portfolio design. Finally, we construct the high dimension risk parity portfolio which can consistently outperform the equal weight portfolio in the application of Chinese stock markets.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"116 ","pages":"Article 102999"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000054","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a parallel non-convex approximation framework (NCAQ) for optimization problems whose objective is to minimize a convex function plus the sum of non-convex functions. Based on the structure of the objective function, our framework transforms the non-convex constraints to the logarithmic barrier function and approximates the non-convex problem by a parallel quadratic approximation scheme, which will allow the original problem to be solved by accelerated inexact gradient descent in the parallel environment. Moreover, we give a detailed convergence analysis for the proposed framework. The numerical experiments show that our framework outperforms the state-of-art approaches in terms of accuracy and computation time on the high dimension non-convex Rosenbrock test functions and the risk parity problems. In particular, we implement the proposed framework on CUDA, showing a more than 25 times speed-up ratio and removing the computational bottleneck for non-convex risk-parity portfolio design. Finally, we construct the high dimension risk parity portfolio which can consistently outperform the equal weight portfolio in the application of Chinese stock markets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风险平价投资组合设计的并行非凸近似框架
在本文中,我们提出了一个用于优化问题的并行非凸近似框架(NCAQ),其目标是最小化凸函数加上非凸函数之和。基于目标函数的结构,我们的框架将非凸约束转换为对数屏障函数,并通过并行二次逼近方案逼近非凸问题,这将允许在并行环境中通过加速不精确梯度下降来解决原始问题。此外,我们还对所提出的框架进行了详细的收敛性分析。数值实验表明,在高维非凸Rosenbrock检验函数和风险平价问题上,我们的框架在精度和计算时间方面优于现有方法。特别是,我们在CUDA上实现了所提出的框架,显示出超过25倍的加速率,并消除了非凸风险平价投资组合设计的计算瓶颈。最后,我们构造了高维风险平价投资组合,该投资组合在中国股市的应用中能够持续优于等权重投资组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1