{"title":"The British Geological Survey Rock Classification Scheme, its representation as linked data, and a comparison with some other lithology vocabularies","authors":"Tim McCormick, Rachel E. Heaven","doi":"10.1016/j.acags.2023.100140","DOIUrl":null,"url":null,"abstract":"<div><p>Controlled vocabularies are critical to constructing FAIR (findable, accessible, interoperable, re-useable) data. One of the most widely required, yet complex, vocabularies in earth science is for rock and sediment type, or ‘lithology’. Since 1999 the British Geological Survey has used its own Rock Classification Scheme in many of its workflows and products including the national digital geological map. This scheme pre-dates others that have been published, and is deeply embedded in BGS’ processes. By publishing this classification scheme now as a Simple Knowledge Organisation System (SKOS) machine-readable informal ontology, we make it available for ourselves and third parties to use in modern semantic applications, and we open the future possibility of using the tools SKOS provides to align our scheme with other published schemes. These include the IUGS-CGI Simple Lithology Scheme, the European Commission INSPIRE Lithology Code List, the Queensland Geological Survey Lithotype Scheme, the USGS Lithologic Classification of Geologic Map Units, and <span>Mindat.org</span><svg><path></path></svg>. The BGS lithology classification was initially based on four narrative reports that can be downloaded from the BGS website, although it has been added to subsequently. The classification is almost entirely mono-hierarchical in nature and includes 3454 currently valid concepts in a classification 11 levels deep. It includes igneous rocks and sediments, metamorphic rocks, sediments and sedimentary rocks, and superficial deposits including anthropogenic deposits. The SKOS informal ontology built on it is stored in a triplestore and the triples are updated nightly by extracting from a relational database where the ontology is maintained. Bulk downloads and version history are available on github. The RCS concepts themselves are used in other BGS linked data, namely the Lexicon of Named Rock Units and the linked data representation of the 1:625 000 scale geological map of the UK. Comparing the RCS with the other published lithology schemes, all are broadly similar but show characteristics that reveal the interests and requirements of the groups that developed them, in terms of their level of detail both overall and in constituent parts. It should be possible to align the RCS with the other classifications, and future work will focus on automated mechanisms to do this, and possibly on constructing a formal ontology for the RCS.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"20 ","pages":"Article 100140"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Controlled vocabularies are critical to constructing FAIR (findable, accessible, interoperable, re-useable) data. One of the most widely required, yet complex, vocabularies in earth science is for rock and sediment type, or ‘lithology’. Since 1999 the British Geological Survey has used its own Rock Classification Scheme in many of its workflows and products including the national digital geological map. This scheme pre-dates others that have been published, and is deeply embedded in BGS’ processes. By publishing this classification scheme now as a Simple Knowledge Organisation System (SKOS) machine-readable informal ontology, we make it available for ourselves and third parties to use in modern semantic applications, and we open the future possibility of using the tools SKOS provides to align our scheme with other published schemes. These include the IUGS-CGI Simple Lithology Scheme, the European Commission INSPIRE Lithology Code List, the Queensland Geological Survey Lithotype Scheme, the USGS Lithologic Classification of Geologic Map Units, and Mindat.org. The BGS lithology classification was initially based on four narrative reports that can be downloaded from the BGS website, although it has been added to subsequently. The classification is almost entirely mono-hierarchical in nature and includes 3454 currently valid concepts in a classification 11 levels deep. It includes igneous rocks and sediments, metamorphic rocks, sediments and sedimentary rocks, and superficial deposits including anthropogenic deposits. The SKOS informal ontology built on it is stored in a triplestore and the triples are updated nightly by extracting from a relational database where the ontology is maintained. Bulk downloads and version history are available on github. The RCS concepts themselves are used in other BGS linked data, namely the Lexicon of Named Rock Units and the linked data representation of the 1:625 000 scale geological map of the UK. Comparing the RCS with the other published lithology schemes, all are broadly similar but show characteristics that reveal the interests and requirements of the groups that developed them, in terms of their level of detail both overall and in constituent parts. It should be possible to align the RCS with the other classifications, and future work will focus on automated mechanisms to do this, and possibly on constructing a formal ontology for the RCS.