Learning fair representations via an adversarial framework

Huadong Qiu , Rui Feng , Ruoyun Hu , Xiao Yang , Shaowa Lin , Quanjin Tao , Yang Yang
{"title":"Learning fair representations via an adversarial framework","authors":"Huadong Qiu ,&nbsp;Rui Feng ,&nbsp;Ruoyun Hu ,&nbsp;Xiao Yang ,&nbsp;Shaowa Lin ,&nbsp;Quanjin Tao ,&nbsp;Yang Yang","doi":"10.1016/j.aiopen.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Fairness has become a central issue for our research community as classification algorithms are adopted in societally critical domains such as recidivism prediction and loan approval. In this work, we consider the potential bias based on protected attributes (e.g., race and gender), and tackle this problem by learning latent representations of individuals that are statistically indistinguishable between protected groups while sufficiently preserving other information for classification. To do that, we develop a minimax adversarial framework with a <em>generator</em> to capture the data distribution and generate latent representations, and a <em>critic</em> to ensure that the distributions across different protected groups are similar. Our framework provides theoretical guarantee with respect statistical parity and individual fairness. Empirical results on four real-world datasets also show that the learned representation can effectively be used for classification tasks such as credit risk prediction while obstructing information related to protected groups, especially when removing protected attributes is not sufficient for fair classification.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"4 ","pages":"Pages 91-97"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fairness has become a central issue for our research community as classification algorithms are adopted in societally critical domains such as recidivism prediction and loan approval. In this work, we consider the potential bias based on protected attributes (e.g., race and gender), and tackle this problem by learning latent representations of individuals that are statistically indistinguishable between protected groups while sufficiently preserving other information for classification. To do that, we develop a minimax adversarial framework with a generator to capture the data distribution and generate latent representations, and a critic to ensure that the distributions across different protected groups are similar. Our framework provides theoretical guarantee with respect statistical parity and individual fairness. Empirical results on four real-world datasets also show that the learned representation can effectively be used for classification tasks such as credit risk prediction while obstructing information related to protected groups, especially when removing protected attributes is not sufficient for fair classification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对抗性框架学习公平表征
随着分类算法在累犯预测和贷款审批等社会关键领域的应用,公平性已成为我们研究界的核心问题。在这项工作中,我们考虑了基于受保护属性(如种族和性别)的潜在偏见,并通过学习受保护群体之间在统计上无法区分的个人的潜在表征来解决这个问题,同时充分保留其他信息进行分类。为此,我们开发了一个极小最大对抗性框架,其中有一个生成器来捕获数据分布并生成潜在表示,还有一个评论家来确保不同受保护组之间的分布是相似的。我们的框架为尊重统计平等和个人公平提供了理论保障。在四个真实世界数据集上的经验结果还表明,学习的表示可以有效地用于分类任务,如信用风险预测,同时阻碍与受保护群体相关的信息,特别是当去除受保护属性不足以进行公平分类时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1