Discovering the hidden personality of lambs: Harnessing the power of Deep Convolutional Neural Networks (DCNNs) to predict temperament from facial images
Cihan Çakmakçı , Danielle Rodrigues Magalhaes , Vitor Ramos Pacor , Douglas Henrique Silva de Almeida , Yusuf Çakmakçı , Selma Dalga , Csaba Szabo , Gustavo A. María , Cristiane Gonçalves Titto
{"title":"Discovering the hidden personality of lambs: Harnessing the power of Deep Convolutional Neural Networks (DCNNs) to predict temperament from facial images","authors":"Cihan Çakmakçı , Danielle Rodrigues Magalhaes , Vitor Ramos Pacor , Douglas Henrique Silva de Almeida , Yusuf Çakmakçı , Selma Dalga , Csaba Szabo , Gustavo A. María , Cristiane Gonçalves Titto","doi":"10.1016/j.applanim.2023.106060","DOIUrl":null,"url":null,"abstract":"<div><p><span>The objective of this study was to define a more practical and reliable alternative to manual temperament classification methods that rely on the behavioral responses of animals individually subjected to various tests. Specifically, this study evaluated the correlation between facial image information and temperament based on deep convolutional neural networks (DCNNs) to predict the temperament of lambs based on their facial images. In the first phase, the lambs were categorized as to their temperament based on data acquired from a behavioral test to establish a ground truth for the temperament of the lambs. This enabled us to train (70%), validate (20%), and test (10%) deep-learning models in the second phase based on facial images and the corresponding temperament labels derived from the behavioral test. The performance of a custom deep convolutional neural network (C-DCNN) was compared to that of pre-trained VGG19 and Xception models for image classification. The Xception model achieved a training accuracy of 81%, which indicated that it learned well the underlying patterns in the data; however, lower validation (0.75) and test (0.58) accuracies indicate that it overfit the training data and did not generalize well to new samples. The VGG19 model, produced lower training (0.59), validation (0.46), and test (0.34) accuracies, which indicated that it did not learn the underlying patterns in the data as well as the Xception model. Furthermore, its precision (0.47), recall (0.42), and F1 score (0.41) indicated that the model performed poorly in identifying the classes correctly. The C-DCNN produced a moderate accuracy of 60%, which indicated that the model was able to predict the temperament traits of lambs with an accuracy of 60%, which was better than random guessing (33% accuracy), and demonstrated the potential of this approach in assessing temperament. The C-DCNN precision (0.69), recall (0.61) and F1 score (0.63) indicated that it had a moderate ability to correctly identify positive cases; however, the small size of the original dataset remains a limitation of the study because it might have caused the suboptimal performance of the models. To validate this approach, further research is needed based on a larger and more diverse dataset. We will continue to investigate the potential of deep learning and computer vision to predict animal personality traits from facial images based on large, diverse datasets, which might lead to more efficient and objective methods for assessing animal temperament and improving </span>animal welfare.</p></div>","PeriodicalId":8222,"journal":{"name":"Applied Animal Behaviour Science","volume":"267 ","pages":"Article 106060"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Animal Behaviour Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168159123002320","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to define a more practical and reliable alternative to manual temperament classification methods that rely on the behavioral responses of animals individually subjected to various tests. Specifically, this study evaluated the correlation between facial image information and temperament based on deep convolutional neural networks (DCNNs) to predict the temperament of lambs based on their facial images. In the first phase, the lambs were categorized as to their temperament based on data acquired from a behavioral test to establish a ground truth for the temperament of the lambs. This enabled us to train (70%), validate (20%), and test (10%) deep-learning models in the second phase based on facial images and the corresponding temperament labels derived from the behavioral test. The performance of a custom deep convolutional neural network (C-DCNN) was compared to that of pre-trained VGG19 and Xception models for image classification. The Xception model achieved a training accuracy of 81%, which indicated that it learned well the underlying patterns in the data; however, lower validation (0.75) and test (0.58) accuracies indicate that it overfit the training data and did not generalize well to new samples. The VGG19 model, produced lower training (0.59), validation (0.46), and test (0.34) accuracies, which indicated that it did not learn the underlying patterns in the data as well as the Xception model. Furthermore, its precision (0.47), recall (0.42), and F1 score (0.41) indicated that the model performed poorly in identifying the classes correctly. The C-DCNN produced a moderate accuracy of 60%, which indicated that the model was able to predict the temperament traits of lambs with an accuracy of 60%, which was better than random guessing (33% accuracy), and demonstrated the potential of this approach in assessing temperament. The C-DCNN precision (0.69), recall (0.61) and F1 score (0.63) indicated that it had a moderate ability to correctly identify positive cases; however, the small size of the original dataset remains a limitation of the study because it might have caused the suboptimal performance of the models. To validate this approach, further research is needed based on a larger and more diverse dataset. We will continue to investigate the potential of deep learning and computer vision to predict animal personality traits from facial images based on large, diverse datasets, which might lead to more efficient and objective methods for assessing animal temperament and improving animal welfare.
期刊介绍:
This journal publishes relevant information on the behaviour of domesticated and utilized animals.
Topics covered include:
-Behaviour of farm, zoo and laboratory animals in relation to animal management and welfare
-Behaviour of companion animals in relation to behavioural problems, for example, in relation to the training of dogs for different purposes, in relation to behavioural problems
-Studies of the behaviour of wild animals when these studies are relevant from an applied perspective, for example in relation to wildlife management, pest management or nature conservation
-Methodological studies within relevant fields
The principal subjects are farm, companion and laboratory animals, including, of course, poultry. The journal also deals with the following animal subjects:
-Those involved in any farming system, e.g. deer, rabbits and fur-bearing animals
-Those in ANY form of confinement, e.g. zoos, safari parks and other forms of display
-Feral animals, and any animal species which impinge on farming operations, e.g. as causes of loss or damage
-Species used for hunting, recreation etc. may also be considered as acceptable subjects in some instances
-Laboratory animals, if the material relates to their behavioural requirements