Discovery of novel CaMK-II inhibitor for the possible mitigation of arrhythmia through pharmacophore modelling, virtual screening, molecular docking, and toxicity prediction

Niyati Parekh , Sarthak Lakhani , Ayushi Patel , Dhyanesh Oza , Bhumika Patel , Ruchi Yadav , Udit Chaube
{"title":"Discovery of novel CaMK-II inhibitor for the possible mitigation of arrhythmia through pharmacophore modelling, virtual screening, molecular docking, and toxicity prediction","authors":"Niyati Parekh ,&nbsp;Sarthak Lakhani ,&nbsp;Ayushi Patel ,&nbsp;Dhyanesh Oza ,&nbsp;Bhumika Patel ,&nbsp;Ruchi Yadav ,&nbsp;Udit Chaube","doi":"10.1016/j.aichem.2023.100009","DOIUrl":null,"url":null,"abstract":"<div><p>In the present research, a few well-known artificial intelligence tools were explored for efficient hit selection which could be further utilized for the discovery of CaMK-II inhibitors for the Treatment of arrhythmia. To achieve the desired goals pharmacophore modelling, database retrieval, molecular docking studies, and toxicity prediction were performed. Pharmacophore modelling was performed with the Pharmit open-source database which gave the features viz. Hydrogen Bond Donor, Hydrogen Bond Acceptor, and Hydrophobic. This pharmacophore is generated with the aid of the protein of CaMK-II (PDB ID: 2WEL) and co-crystallized ligand K88. Further, this generated pharmacophore was screened through the various Pharmit databases which include CHEMBL30, ChemDiv, ChemSpace, MCULE, MolPort, NCI Open Chemical Repository, Lab Network, and ZINC. Further, the top two hits from each database that has maximum similarity with the pharmacophore have been selected for the molecular docking and ADMET studies. Among, all the hits CHEMBL 1952032 showed good binding interactions with CaMK-II. Also, it was found to be non-toxic upon evaluation through the OSIRIS property explorer. In the future, it can be explored against the CaMK-II for the development of novel CaMK-II inhibitors which can be used for the mitigation of arrhythmia.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294974772300009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present research, a few well-known artificial intelligence tools were explored for efficient hit selection which could be further utilized for the discovery of CaMK-II inhibitors for the Treatment of arrhythmia. To achieve the desired goals pharmacophore modelling, database retrieval, molecular docking studies, and toxicity prediction were performed. Pharmacophore modelling was performed with the Pharmit open-source database which gave the features viz. Hydrogen Bond Donor, Hydrogen Bond Acceptor, and Hydrophobic. This pharmacophore is generated with the aid of the protein of CaMK-II (PDB ID: 2WEL) and co-crystallized ligand K88. Further, this generated pharmacophore was screened through the various Pharmit databases which include CHEMBL30, ChemDiv, ChemSpace, MCULE, MolPort, NCI Open Chemical Repository, Lab Network, and ZINC. Further, the top two hits from each database that has maximum similarity with the pharmacophore have been selected for the molecular docking and ADMET studies. Among, all the hits CHEMBL 1952032 showed good binding interactions with CaMK-II. Also, it was found to be non-toxic upon evaluation through the OSIRIS property explorer. In the future, it can be explored against the CaMK-II for the development of novel CaMK-II inhibitors which can be used for the mitigation of arrhythmia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过药效团建模、虚拟筛选、分子对接和毒性预测,发现可能缓解心律失常的新型CaMK-II抑制剂
在本研究中,探索了一些著名的人工智能工具来进行有效的命中选择,这些工具可进一步用于发现用于治疗心律失常的CaMK II抑制剂。为了实现预期目标,进行了药效团建模、数据库检索、分子对接研究和毒性预测。药效团建模是用Pharmit开源数据库进行的,该数据库给出了氢键供体、氢键受体和疏水性的特征。该药效团是在CaMK II蛋白(PDB ID:2WEL)和共结晶配体K88的帮助下产生的。此外,通过各种Pharmit数据库筛选产生的药效团,这些数据库包括CHEMBL30、ChemDiv、ChemSpace、MCULE、MolPort、NCI Open Chemical Repository、Lab Network和ZINC。此外,每个数据库中与药效团具有最大相似性的前两个点击已被选择用于分子对接和ADMET研究。其中,CHEMBL 1952032与CaMK II均表现出良好的结合作用。此外,通过OSIRIS财产勘探器评估,发现其无毒。未来,它可以针对CaMK II进行探索,以开发可用于缓解心律失常的新型CaMKⅡ抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
Molecular similarity: Theory, applications, and perspectives Large-language models: The game-changers for materials science research Conf-GEM: A geometric information-assisted direct conformation generation model Top 20 influential AI-based technologies in chemistry User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1