Evaluating connected vehicle-based weather responsive management strategies using weather-sensitive microscopic simulation

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2023-01-02 DOI:10.1080/15472450.2021.1990052
Qinhua Jiang , Dong Nian , Yi Guo , Mohamed Ahmed , Guangchuan Yang , Jiaqi Ma
{"title":"Evaluating connected vehicle-based weather responsive management strategies using weather-sensitive microscopic simulation","authors":"Qinhua Jiang ,&nbsp;Dong Nian ,&nbsp;Yi Guo ,&nbsp;Mohamed Ahmed ,&nbsp;Guangchuan Yang ,&nbsp;Jiaqi Ma","doi":"10.1080/15472450.2021.1990052","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study is to perform analysis, modeling, and simulation (AMS) to investigate the effectiveness of connected vehicle (CV)-based Weather Responsive Management Strategies (WRMS) to address safety concerns on freeway corridors under adverse weather conditions. This study investigates three CV-based WRMS applications: Forward Collision Warning (FCW), Early Lane Change (ELC) advisory, and Variable Speed Limit (VSL), designs operational alternatives for WRMS using CV data, and develops an AMS tool using a weather-sensitive microscopic traffic simulator to understand the effectiveness of the three WRMS under different scenarios. Various CV market penetration rates (MPR), weather conditions, and WRMS algorithm settings are tested in this study. The case study is based on a real-world freeway corridor, a segment of the I–80 Connected Vehicle Testbed in Wyoming. The simulation results show the effectiveness of selected WRMS applications and provide operational insights that state and local transportation agencies may use in future strategic planning and operations of their weather-responsive programs.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 1","pages":"Pages 92-110"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022003929","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of this study is to perform analysis, modeling, and simulation (AMS) to investigate the effectiveness of connected vehicle (CV)-based Weather Responsive Management Strategies (WRMS) to address safety concerns on freeway corridors under adverse weather conditions. This study investigates three CV-based WRMS applications: Forward Collision Warning (FCW), Early Lane Change (ELC) advisory, and Variable Speed Limit (VSL), designs operational alternatives for WRMS using CV data, and develops an AMS tool using a weather-sensitive microscopic traffic simulator to understand the effectiveness of the three WRMS under different scenarios. Various CV market penetration rates (MPR), weather conditions, and WRMS algorithm settings are tested in this study. The case study is based on a real-world freeway corridor, a segment of the I–80 Connected Vehicle Testbed in Wyoming. The simulation results show the effectiveness of selected WRMS applications and provide operational insights that state and local transportation agencies may use in future strategic planning and operations of their weather-responsive programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用天气敏感微观模拟评估基于联网车辆的天气响应管理策略
本研究的目的是进行分析、建模和仿真(AMS),以研究基于联网车辆(CV)的天气响应管理策略(WRMS)在恶劣天气条件下解决高速公路走廊安全问题的有效性。本研究调查了三种基于CV的WRMS应用:前向碰撞警告(FCW)、早期换道(ELC)咨询和可变限速(VSL),使用CV数据设计了WRMS的操作替代方案,并使用天气敏感的微观交通模拟器开发了AMS工具,以了解三种WRMS在不同场景下的有效性。本研究测试了各种CV市场渗透率(MPR)、天气条件和WRMS算法设置。该案例研究基于怀俄明州I-80联网车辆试验台的一段真实世界的高速公路走廊。模拟结果显示了选定的WRMS应用程序的有效性,并提供了运营见解,供州和地方交通机构在其天气响应计划的未来战略规划和运营中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1