High emotional reactivity is associated with activation of a molecularly distinct hippocampal-amygdala circuit modulated by the glucocorticoid receptor
Qiang Wei , Vivek Kumar , Shannon Moore, Fei Li, Geoffrey G. Murphy, Stanley J. Watson , Huda Akil
{"title":"High emotional reactivity is associated with activation of a molecularly distinct hippocampal-amygdala circuit modulated by the glucocorticoid receptor","authors":"Qiang Wei , Vivek Kumar , Shannon Moore, Fei Li, Geoffrey G. Murphy, Stanley J. Watson , Huda Akil","doi":"10.1016/j.ynstr.2023.100581","DOIUrl":null,"url":null,"abstract":"<div><p>Emotions are characterized not only by their valence but also by whether they are stable or labile. Yet, we do not understand the molecular or circuit mechanisms that control the dynamic nature of emotional responses. We have shown that glucocorticoid receptor overexpression in the forebrain (GRov) leads to a highly reactive mouse with increased anxiety behavior coupled with greater swings in emotional responses. This phenotype is established early in development and persists into adulthood. However, the neural circuitry mediating this lifelong emotional lability remains unknown. In the present study, optogenetic stimulation in ventral dentate gyrus (vDG) of GRov mice led to a greater range and a prolonged duration of anxiety behavior. cFos expression analysis showed that the amplified behavioral response to vDG activation in GRov mice is coupled to increased neuronal activity in specific brain regions. Relative to wild type mice, GRov mice displayed glutamatergic/GABAergic activation imbalance in ventral CA1 (vCA1) and selectively increased glutamatergic activation in the basal posterior amygdaloid complex. Moreover, forebrain GR overexpression led to increased activation of molecularly distinct subpopulations of neurons within the hippocampus and the posterior basolateral amygdala (pBLA) as evident from the increased cFos co-labeling in the calbindin1<sup>+</sup> glutamatergic neurons in vCA1 and in the DARPP-32/Ppp1r1b<sup>+</sup> glutamatergic neurons in pBLA. We propose that a molecularly distinct hippocampal-amygdala circuit is shaped by stress early in life and tunes the dynamics of emotional responses.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"27 ","pages":"Article 100581"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289523000693","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Emotions are characterized not only by their valence but also by whether they are stable or labile. Yet, we do not understand the molecular or circuit mechanisms that control the dynamic nature of emotional responses. We have shown that glucocorticoid receptor overexpression in the forebrain (GRov) leads to a highly reactive mouse with increased anxiety behavior coupled with greater swings in emotional responses. This phenotype is established early in development and persists into adulthood. However, the neural circuitry mediating this lifelong emotional lability remains unknown. In the present study, optogenetic stimulation in ventral dentate gyrus (vDG) of GRov mice led to a greater range and a prolonged duration of anxiety behavior. cFos expression analysis showed that the amplified behavioral response to vDG activation in GRov mice is coupled to increased neuronal activity in specific brain regions. Relative to wild type mice, GRov mice displayed glutamatergic/GABAergic activation imbalance in ventral CA1 (vCA1) and selectively increased glutamatergic activation in the basal posterior amygdaloid complex. Moreover, forebrain GR overexpression led to increased activation of molecularly distinct subpopulations of neurons within the hippocampus and the posterior basolateral amygdala (pBLA) as evident from the increased cFos co-labeling in the calbindin1+ glutamatergic neurons in vCA1 and in the DARPP-32/Ppp1r1b+ glutamatergic neurons in pBLA. We propose that a molecularly distinct hippocampal-amygdala circuit is shaped by stress early in life and tunes the dynamics of emotional responses.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.